10 resultados para Der Vertraute
em Indian Institute of Science - Bangalore - Índia
Resumo:
The application of the van der Pauw-Hall measurement technique to implanted samples in which the mobility varies with depth has still not been fully justified. A proof that the technique is in fact applicable in this situation is given. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
The van der Waals and Platteuw (vdVVP) theory has been successfully used to model the thermodynamics of gas hydrates. However, earlier studies have shown that this could be due to the presence of a large number of adjustable parameters whose values are obtained through regression with experimental data. To test this assertion, we carry out a systematic and rigorous study of the performance of various models of vdWP theory that have been proposed over the years. The hydrate phase equilibrium data used for this study is obtained from Monte Carlo molecular simulations of methane hydrates. The parameters of the vdWP theory are regressed from this equilibrium data and compared with their true values obtained directly from simulations. This comparison reveals that (i) methane-water interactions beyond the first cage and methane-methane interactions make a significant contribution to the partition function and thus cannot be neglected, (ii) the rigorous Monte Carlo integration should be used to evaluate the Langmuir constant instead of the spherical smoothed cell approximation, (iii) the parameter values describing the methane-water interactions cannot be correctly regressed from the equilibrium data using the vdVVP theory in its present form, (iv) the regressed empty hydrate property values closely match their true values irrespective of the level of rigor in the theory, and (v) the flexibility of the water lattice forming the hydrate phase needs to be incorporated in the vdWP theory. Since methane is among the simplest of hydrate forming molecules, the conclusions from this study should also hold true for more complicated hydrate guest molecules.
Resumo:
In the paper, the well known Adomian Decomposition Method (ADM) is modified to solve the parabolic equations. The present method is quite different than the numerical method. The results are compared with the existing exact or analytical method. The already known existing Adomian Decomposition Method is modified to improve the accuracy and convergence. Thus, the modified method is named as Modified Adomian Decomposition Method (MADM). The Modified Adomian Decomposition Method results are found to converge very quickly and are more accurate compared to ADM and numerical methods. MADM is quite efficient and is practically well suited for use in these problems. Several examples are given to check the reliability of the present method. Modified Adomian Decomposition Method is a non-numerical method which can be adapted for solving parabolic equations. In the current paper, the principle of the decomposition method is described, and its advantages are shown in the form of parabolic equations. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Resumo:
We report on the fabrication and observation of emergent opto-electronic phenomena in three dimensional, micron-sized van der Waals heterostructures self-assembled from atomic layers of graphene and hexagonal boron nitride in varying ratios.