356 resultados para Dependent Schrodinger-equation
em Indian Institute of Science - Bangalore - Índia
Resumo:
Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe-12. The largest calculation involves the Fe-12 ring which spans a Hilbert space dimension of about 145x10(6) for the M-S=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and first excited states defining the inverse of the moment of inertia. We have studied the quantum dynamics of Fe-10 as a representative of ferric wheels. We use the low-lying states of Fe-10 to solve exactly the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe-12 as a function of a magnetic field, which clearly shows spin-state crossover.
Resumo:
We discuss a technique for solving the Landau-Zener (LZ) problem of finding the probability of excitation in a two-level system. The idea of time reversal for the Schrodinger equation is employed to obtain the state reached at the final time and hence the excitation probability. Using this method, which can reproduce the well-known expression for the LZ transition probability, we solve a variant of the LZ problem, which involves waiting at the minimum gap for a time t(w); we find an exact expression for the excitation probability as a function of t(w). We provide numerical results to support our analytical expressions. We then discuss the problem of waiting at the quantum critical point of a many-body system and calculate the residual energy generated by the time-dependent Hamiltonian. Finally, we discuss possible experimental realizations of this work.
Resumo:
This paper deals with the Schrodinger equation i partial derivative(s)u(z, t; s) - Lu(z, t; s) = 0; where L is the sub-Laplacian on the Heisenberg group. Assume that the initial data f satisfies vertical bar f(z, t)vertical bar less than or similar to q(alpha)(z, t), where q(s) is the heat kernel associated to L. If in addition vertical bar u(z, t; s(0))vertical bar less than or similar to q(beta)(z, t), for some s(0) is an element of R \textbackslash {0}, then we prove that u(z, t; s) = 0 for all s is an element of R whenever alpha beta < s(0)(2). This result holds true in the more general context of H-type groups. We also prove an analogous result for the Grushin operator on Rn+1.
Resumo:
In this paper, we present the solutions of 1-D and 2-D non-linear partial differential equations with initial conditions. We approach the solutions in time domain using two methods. We first solve the equations using Fourier spectral approximation in the spatial domain and secondly we compare the results with the approximation in the spatial domain using orthogonal functions such as Legendre or Chebyshev polynomials as their basis functions. The advantages and the applicability of the two different methods for different types of problems are brought out by considering 1-D and 2-D nonlinear partial differential equations namely the Korteweg-de-Vries and nonlinear Schrodinger equation with different potential function. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this work a physically based analytical quantum threshold voltage model for the triple gate long channel metal oxide semiconductor field effect transistor is developed The proposed model is based on the analytical solution of two-dimensional Poisson and two-dimensional Schrodinger equation Proposed model is extended for short channel devices by including semi-empirical correction The impact of effective mass variation with film thicknesses is also discussed using the proposed model All models are fully validated against the professional numerical device simulator for a wide range of device geometries (C) 2010 Elsevier Ltd All rights reserved
Resumo:
In this paper, a physically based analytical quantum linear threshold voltage model for short channel quad gate MOSFETs is developed. The proposed model, which is suitable for circuit simulation, is based on the analytical solution of 3-D Poisson and 2-D Schrodinger equation. Proposed model is fully validated against the professional numerical device simulator for a wide range of device geometries and also used to analyze the effect of geometry variation on the threshold voltage.
Resumo:
In this paper, we investigate the initiation and subsequent evolution of Crow instability in an inhomogeneous unitary Fermi gas using zero-temperature Galilei-invariant nonlinear Schrodinger equation. Considering a cigar-shaped unitary Fermi gas, we generate the vortex-antivortex pair either by phase-imprinting or by moving a Gaussian obstacle potential. We observe that the Crow instability in a unitary Fermi gas leads to the decay of the vortex-antivortex pair into multiple vortex rings and ultimately into sound waves.
Resumo:
We theoretically analyze the performance of transition metal dichalcogenide (MX2) single wall nanotube (SWNT) surround gate MOSFET, in the 10 nm technology node. We consider semiconducting armchair (n, n) SWNT of MoS2, MoSe2, WS2, and WSe2 for our study. The material properties of the nanotubes are evaluated from the density functional theory, and the ballistic device characteristics are obtained by self-consistently solving the Poisson-Schrodinger equation under the non-equilibrium Green's function formalism. Simulated ON currents are in the range of 61-76 mu A for 4.5 nm diameter MX2 tubes, with peak transconductance similar to 175-218 mu S and ON/OFF ratio similar to 0.6 x 10(5)-0.8 x 10(5). The subthreshold slope is similar to 62.22 mV/decade and a nominal drain induced barrier lowering of similar to 12-15 mV/V is observed for the devices. The tungsten dichalcogenide nanotubes offer superior device output characteristics compared to the molybdenum dichalcogenide nanotubes, with WSe2 showing the best performance. Studying SWNT diameters of 2.5-5 nm, it is found that increase in diameter provides smaller carrier effective mass and 4%-6% higher ON currents. Using mean free path calculation to project the quasi-ballistic currents, 62%-75% reduction from ballistic values in drain current in long channel lengths of 100, 200 nm is observed.
Resumo:
Using the recently developed model predictive static programming (MPSP), a suboptimal guidance logic is presented in this paper for formation flying of small satellites. Due to the inherent nature of the problem formulation, MPSP does not require the system dynamics to be linearized. The proposed guidance scheme is valid both for high eccentricity chief satellite orbits as well as large separation distance between chief and deputy satellites. Moreover, since MPSP poses the desired conditions as a set of `hard constraints', the final accuracy level achieved is very high. The proposed guidance scheme has been tested successfully for a variety of initial conditions and for a variety of formation commands as well. Comparison with standard Linear Quadratic Regulator (LQR) solution (which serves as a guess solution for MPSP) and another nonlinear controller, State Dependent Riccati Equation (SDRE) reveals that MPSP guidance achieves the objective with higher accuracy and with lesser amount of control usage as well.
Resumo:
A guidance law derived by modifying state dependent Riccati equation technique, to enable the imposition of a predetermined terminal intercept angle to a maneuvering target, is presented in this paper. The interceptor is assumed to have no knowledge about the type of maneuver the target is executing. The problem is cast in a non-cooperative game theoretic form. The guidance law obtained is dependent on the LOS angular rotational rate and on the impact angle error. Theoretical conditions which guarantee existence of solutions under this method have been derived. It is shown that imposing the impact angle constraint calls for an increase in the gains of the guidance law considerably, subsequently requiring a higher maneuverability advantage of the interceptor. The performance of the proposed guidance law is studied using a non-linear two dimensional simulation of the relative kinematics, assuming first order dynamics for the interceptor and target.
Resumo:
We develop the formalism of quantum mechanics on three-dimensional fuzzy space and solve the Schrodinger equation for the free particle, finite and infinite fuzzy wells. We show that all results reduce to the appropriate commutative limits. A high energy cut-off is found for the free particle spectrum, which also results in the modification of the high energy dispersion relation. An ultra-violet/infra-red duality is manifest in the free particle spectrum. The finite well also has an upper bound on the possible energy eigenvalues. The phase shifts due to scattering around the finite fuzzy potential well are calculated.
Resumo:
Eigenfunctions of integrable planar billiards are studied - in particular, the number of nodal domains, nu of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrodinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and nonseparable integrable billiards, nu satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of m mod kn, given a particular k, for a set of quantum numbers, m, n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrodinger equation.
Resumo:
The problem of intercepting a maneuvering target at a prespecified impact angle is posed in nonlinear zero-sum differential games framework. A feedback form solution is proposed by extending state-dependent Riccati equation method to nonlinear zero-sum differential games. An analytic solution is obtained for the state-dependent Riccati equation corresponding to the impact-angle-constrained guidance problem. The impact-angle-constrained guidance law is derived using the states line-of-sight rate and projected terminal impact angle error. Local asymptotic stability conditions for the closed-loop system corresponding to these states are studied. Time-to-go estimation is not explicitly required to derive and implement the proposed guidance law. Performance of the proposed guidance law is validated using two-dimensional simulation of the relative nonlinear kinematics as well as a thrust-driven realistic interceptor model.