32 resultados para Dengue - Paranavaí (PR) - 1999
em Indian Institute of Science - Bangalore - Índia
Resumo:
We have examined the magnetotransport properties and the structure, by Rietveld refinement of powder X-ray data, of the phases RE(1.2)Sr(1.8)Mn(2)O(7) (RE = La, Pr, Nd). We find that on cooling, La1.2Sr1.8Mn2O7 undergoes a transition to a nearly perfect ferromagnet with 90% magnetization at 1.45 T, as reported by earlier workers, but the Pr and Nd phases show only a small magnetization that grows gradually as the temperature is decreased. There seems to be significant correlation between electrical transport and the Jahn-Teller elongation of the apical Mn-O bonds in these systems. The elongation of the apical Mn-O bonds forces the nine-coordinate rock-salt site to be occupied preferentially by the smaller rare-earth-metal cations. This preferential occupation is reliably obtained from the X-ray refinement. All three title phases show a magnetoresistance ratio of about 4(corresponding to a magnetoresistance, [R(0)-R(H)]/R(0), of about 75%) at a field of 7 T and temperatures around 100 K.
Resumo:
Assembly intermediates of icosahedral viruses are usually transient and are difficult to identify. In the present investigation, site-specific and deletion mutants of the coat protein gene of physalis mottle tymovirus (PhMV) were used to delineate the role of specific amino acid residues in the assembly of the virus and to identify intermediates in this process. N-terminal 30, 34, 35 and 39 amino acid deletion and single C-terminal (N188) deletion mutant proteins of PhMV were expressed in Escherichia coli. Site-specific mutants H69A, C75A, W96A, D144N, D144N-T151A, K143E and N188A were also constructed and expressed. The mutant protein lacking 30 amino acid residues from the N terminus self-assembled to T = 3 particles in vivo while deletions of 34, 35 and 39 amino acid residues resulted in the mutant proteins that were insoluble. Interestingly, the coat protein (pR PhCP) expressed using pRSET B vector with an additional 41 amino acid residues at the N terminus also assembled into T = 3 particles that were more compact and had a smaller diameter. These results demonstrate that the amino-terminal segment is flexible and either the deletion or addition of amino acid residues at the N terminus does not affect T = 3 capsid assembly, in contrast, the deletion of even a single residue from the C terminus (PhN188 Delta 1) resulted in capsids that were unstable. These capsids disassembled to a discrete intermediate with a sedimentation coefficent of 19.4 S. However, the replacement of C-terminal asparagine 188 by alanine led to the formation of stable capsids. The C75A and D144N mutant proteins also assembled into capsids that were as stable as the pR PhCP, suggesting that C75A and D144 are not crucial for the T = 3 capsid assembly. pR PhW96A and pR PhD144N-T151A mutant proteins failed to form capsids and were present as heterogeneous aggregates. Interestingly, the pR PhK143E mutant protein behaved in a manner similar to the C-terminal deletion protein in forming unstable capsids. The intermediate with an s value of 19.4 S was the major assembly product of pR PhH69A mutant protein and could correspond to a 30mer. It is possible that the assembly or disassembly is arrested at a similar stage in pR PhN188 Delta 1, pR PhH69A and pR PhK143E mutant proteins.
Resumo:
In this paper we present the resistivity data for Pr and Zn codoped compound Y1-xPrxBa2[Cu1-yZny](3)O7-delta with 0 < y < 0.1 and x = 0.0, 0.1 and 0.2. The data is analysed in terms of the superconducting critical temperature T-c, residual resistivity rho(0) and the resistivity slope d rho/dT corresponding to the linear rho-T region. It is found that for x = 0.1 Pr has a minimal influence on the in-plane processes for Zn impurity alone affecting slightly T-c and rho(0). The slope dp/dT becomes larger for 0.03 < y < 0.06 leading to larger depining effect and hence slower fall of T, as a function of y. For x = 0.2 there is a drastic change, rho(0) becomes abnormally large, d rho/dT becomes negative implying absence of depinning and a totally pinned charge stripes. Superconductivity vanishes at y = 0.03. It is concluded that for x = 0.2 Pr converts the system from overdoped to underdoped region leading to the universal superconductor-insulator transition.
Resumo:
Sr1−xPrxTiO3 has recently been shown to exhibit ferroelectricity at room temperature. In this paper powder x-ray and neutron-diffraction patterns of this system at room temperature have been analyzed to show that the system exhibits cubic (Pm-3m) structure for x<=0.05 and tetragonal (I4/mcm) for x>0.05. The redundancy of the noncentrosymmetric structural model (I4cm) in the ferroelectric state suggests the absence of long-range ordered ferroelectric domains and supports the relaxor ferroelectric model for this system.
Resumo:
The co-doping effect of Zn and Pr impurities in the compound of composition Y1-xPrxBa2[Cu1-yZny](3)O7-delta with x = 0.1, x = 0.2 and 0 <= y <= 0.1 has been investigated by analyzing the results of electrical resistivity measurements. It is found that for Pr substitution at x = 0.1, there is a minimal influence on in-plane processes, thereby slightly affecting T-c and residual resistivity rho(0), but with the resistivity slope d rho/dT becoming large for the range of y from 0.03 to 0.06, leading to a larger depinning effect. For x = 0.2 a drastic change is observed whereby rho(0) becomes abnormally large, and d rho/dT becomes negative, implying totally pinned charge stripes and no depinning. The second observation therefore suggests that Pr substitution converts the overdoped system to an optimally doped system, leading to the universal superconductor-insulator transition.
Resumo:
Electrical conductivity measurements show that Ln1-xSrxCoO3, (Ln = Pr or Nd) undergoes a non-metal-metal transition when x-0 3. The d.c. conductivity of compositions with 0
Resumo:
Structural, microstructural, and dielectric studies have been carried out on Pr-modified PbTiO3. A comparative analysis with La-modified PbTiO3 suggests that for chemical modification by same amount, the Pr-modified system has larger tetragonal strain and Curie point. No clear feature of relaxor ferroelectric state is observed for Pr concentration as high as x=0.35, suggesting that Pr modification is less effective, as compared to La-modification, in inducing a relaxor ferroelectric state. Results suggest that inspite of increased chemical disorder, Pr modification partly tends to restore the ferroelectric distortion of the lattice through partial occupancy of the Pr4+ ions on the Ti4+ sites.
Resumo:
The ligand bis(diphenylphosphino) isopropylamine (dppipa) has been shown to be a versatile ligand sporting different coordination modes and geometries dictated by copper(I). Most of the molecular structures were confirmed by X-ray crystallography. It is found in a chelating mode, in a monomeric complex when the ligand to copper ratio is 2:1. A tetrameric complex is formed when low ratios of ligand to metal (1: 2) were used. But with increasing ratios of ligand to metal (1: 1 and 2: 1), a trimer or a dimer was obtained depending on the crystallization conditions. Variable temperature P-31{H-1} NMR spectra of these complexes in solution showed that the Cu-P bond was labile and the highly strained 4-membered structure chelate found in the solid state readily converted to a bridged structures. On the other hand, complexes with the ligand in a bridging mode in the solid state did not form chelated structures in solution. The effect of adding tetra-alkylammonium salts to solutions of various complexes of dppipa were probed by P-31{H-1} NMR and revealed the effect of counter ions on the stability of complexes in solution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The first two members of the new TlSrn+1−xLnxCunO2n+3+δ (Ln=La, Pr, or Nd) series of superconducting cuprates possessing 1021 and 1122 type structures are described. The n=1 (1021) members with Tcs around 40 K have electrons or holes as the majority charge carriers depending on x. The n=2 (1122) cuprate (Ln=Pr or Nd) shows a Tc in the 80–90 K range.
Resumo:
Mononuclear, binuclear and trinuclear silver(l) complexes were obtained unexpectedly while probing the reactivity of diphosphazane ligands of the type X2PN(Pr-i)PXY towards the ruthenium-based precursor Ru(bipy)(2)Cl-2 center dot 2H(2)O, in the presence of a silver salt as a chloride scavenger. Subsequently, the reactions of AgX [X = Cl, NO3 or CF3SO3] with Ph2PN(R)PPh(Y) [R = H, Y = Ph; R = Pr-i, Y = Ph or OC6H3Me2-2,6] in a 1: 1 or 1:2 molar ratio have been investigated. Mononuclear or binuclear Ag(I) complexes containing either chelating or bridging diphosphazane ligands are obtained. Trinuclear silver(l) complexes are accessible by the treatment of diphosphazane ligands, Ph2PN(R)PPh2 [R = H, Pr-i] with AgCl using piperidine as the solvent. In the presence of a suitable chloride donor species, the mononuclear and binuclear complexes of Ph2PN(Pr-i)PPh2 are transformed slowly to the trinuclear complex [Ag-3(mu-Cl)(2){Ph2PN(Pr-i)PPh2}(3)]X, over a period 20 h. The structures of representative complexes have been confirmed by X-ray crystallography and the salient structural features are discussed
Resumo:
Background: Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results: In the present analysis, starting from C alpha positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions: Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.
Resumo:
Scheelite type solid electrolytes, Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) have been synthesized using a solid state method. Their structure and ionic conductivity (a) were obtained by single crystal X-ray diffraction and ac-impedance spectroscopy, respectively. X-ray diffraction studies reveal a space group of I4(1)/a for Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) scheelite compounds. The unsubstituted Li0.5Ce0.5MoO4 showed lithium ion conductivity similar to 10(-5)-10(-3) Omega(-1)cm(-1) in the temperature range of 300-700 degrees C (sigma = 2.5 x 10(-3) Omega(-1) cm(-1) at 700 degrees C). The substituted compounds show lower conductivity compared to the unsubstituted compound, with the magnitude of ionic conductivity being two (in the high temperature regime) to one order (in the low temperature regime) lower than the unsubstituted compound. Since these scheelite type structures show significant conductivity, the series of compounds could serve in high temperature lithium battery operations.
Resumo:
Unsymmetrical diphosphazanes Ph(2)PN(Pr-i)PYY' [YY' = O2C12H8 (L(1)), O2C20H12 (L(2)); Y = Ph and Y' = OC6H4Br-4 (L(3)), OC(6)H(4)Me-4 (L(4)), OC(6)H(3)Me(2)-3,5 (L(5)), N(2)C(3)HMe(2)-3,5 (L(6))] react with cis-[PdCl2(COD)] (COD = cycloocta-1,5-diene) giving the chelate complexes of the type cis-[PdCl2{eta(2)-Ph(2)PN(Pr-i)PYY'}] [YY' = O2C12H8 (1), O2C20H12 (2), Y = Ph and Y' = OC6H4Br-4 (3), OC(6)H(4)Me-4 (4), OC(6)H(3)Me(2)-3,5 (5), N(2)C(3)HMe(2)-3,5 (6)]. The P-N bond in 3 and 5 undergoes a facile cleavage in methanol solution to give cis-[PdCl2{eta(1)Ph(2)P(OMe)}{eta(1)-PhP(NHPri)(Y')}] [Y' = OC6H4Br-4 (7), OC(6)H(3)Me(2)-3,5 (8)]. Reactions of Pd-2(dba)(3) . CHCl3 (dba = dibenzylideneacetone) with the diphosphazanes Ph(2)PN(Pr-i)PPhY' [Y' = OC(6)H(4)Me-4 (L(4)), N(2)C(3)HMe(2)-3,5 (L(6)), N2C3H3 (L(7))] in the presence of MeI yields cis-[PdI2{eta(2)-Ph(2)PN(Pr-i)PPhMe}] (9); the P-O or P-N(pyrazolyl) bond of the starting ligands is cleaved and a p-C(Me) bond is formed. An analogous oxidative addition reaction in the presence of Ph(2)PN(Pr-i)PPh(2) (L(8)) yields cis-[PdI(Me)(eta(2)-L(8))] (10) and cis-[PdI2(eta 2-L(8))] (11). The structures of 8 and 9 have been determined by X-ray diffraction. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Thick films of YBa2Cu3O7-delta fabricated on polycrystalline Ba2RETaO6 (where RE= Pr, Nd, Eu, and Dy) substrates by dip-coating and partial melting techniques are textured and c-axis oriented, showing predominantly (00l) orientation. All the thick films show a superconducting zero resistance transition of 90 K. SEM studies clearly indicate platelike and needlelike grain growth over a wide area of the thick films. The values of the critical current density for these thick films are similar to 10(4) A/cm(2) at 77 K as determined by the nonresonant R.F. absorption method. Various processing conditions that affect the critical current density of thick films are also discussed.