11 resultados para Delphic oracle
em Indian Institute of Science - Bangalore - Índia
Resumo:
Conformance testing focuses on checking whether an implementation. under test (IUT) behaves according to its specification. Typically, testers are interested it? performing targeted tests that exercise certain features of the IUT This intention is formalized as a test purpose. The tester needs a "strategy" to reach the goal specified by the test purpose. Also, for a particular test case, the strategy should tell the tester whether the IUT has passed, failed. or deviated front the test purpose. In [8] Jeron and Morel show how to compute, for a given finite state machine specification and a test purpose automaton, a complete test graph (CTG) which represents all test strategies. In this paper; we consider the case when the specification is a hierarchical state machine and show how to compute a hierarchical CTG which preserves the hierarchical structure of the specification. We also propose an algorithm for an online test oracle which avoids a space overhead associated with the CTG.
Resumo:
The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.
Resumo:
The Radius of Direct attraction of a discrete neural network is a measure of stability of the network. it is known that Hopfield networks designed using Hebb's Rule have a radius of direct attraction of Omega(n/p) where n is the size of the input patterns and p is the number of them. This lower bound is tight if p is no larger than 4. We construct a family of such networks with radius of direct attraction Omega(n/root plog p), for any p greater than or equal to 5. The techniques used to prove the result led us to the first polynomial-time algorithm for designing a neural network with maximum radius of direct attraction around arbitrary input patterns. The optimal synaptic matrix is computed using the ellipsoid method of linear programming in conjunction with an efficient separation oracle. Restrictions of symmetry and non-negative diagonal entries in the synaptic matrix can be accommodated within this scheme.
Resumo:
We introduce ToleRace, a runtime system that allows programs to detect and even tolerate asymmetric data races. Asymmetric races are race conditions where one thread correctly acquires and releases a lock for a shared variable while another thread improperly accesses the same variable. ToleRace provides approximate isolation in the critical sections of lock-based parallel programs by creating a local copy of each shared variable when entering a critical section, operating on the local copies, and propagating the appropriate copies upon leaving the critical section. We start by characterizing all possible interleavings that can cause races and precisely describe the effect of ToleRace in each case. Then, we study the theoretical aspects of an oracle that knows exactly what type of interleaving has occurred. Finally, we present software implementations of ToleRace and evaluate them on multithreaded applications from the SPLASH2 and PARSEC suites.
Resumo:
Edge-preserving smoothing is widely used in image processing and bilateral filtering is one way to achieve it. Bilateral filter is a nonlinear combination of domain and range filters. Implementing the classical bilateral filter is computationally intensive, owing to the nonlinearity of the range filter. In the standard form, the domain and range filters are Gaussian functions and the performance depends on the choice of the filter parameters. Recently, a constant time implementation of the bilateral filter has been proposed based on raisedcosine approximation to the Gaussian to facilitate fast implementation of the bilateral filter. We address the problem of determining the optimal parameters for raised-cosine-based constant time implementation of the bilateral filter. To determine the optimal parameters, we propose the use of Stein's unbiased risk estimator (SURE). The fast bilateral filter accelerates the search for optimal parameters by faster optimization of the SURE cost. Experimental results show that the SURE-optimal raised-cosine-based bilateral filter has nearly the same performance as the SURE-optimal standard Gaussian bilateral filter and the Oracle mean squared error (MSE)-based optimal bilateral filter.
Resumo:
Bilateral filters perform edge-preserving smoothing and are widely used for image denoising. The denoising performance is sensitive to the choice of the bilateral filter parameters. We propose an optimal parameter selection for bilateral filtering of images corrupted with Poisson noise. We employ the Poisson's Unbiased Risk Estimate (PURE), which is an unbiased estimate of the Mean Squared Error (MSE). It does not require a priori knowledge of the ground truth and is useful in practical scenarios where there is no access to the original image. Experimental results show that quality of denoising obtained with PURE-optimal bilateral filters is almost indistinguishable with that of the Oracle-MSE-optimal bilateral filters.
Resumo:
The effect of multiplicative noise on a signal when compared with that of additive noise is very large. In this paper, we address the problem of suppressing multiplicative noise in one-dimensional signals. To deal with signals that are corrupted with multiplicative noise, we propose a denoising algorithm based on minimization of an unbiased estimator (MURE) of meansquare error (MSE). We derive an expression for an unbiased estimate of the MSE. The proposed denoising is carried out in wavelet domain (soft thresholding) by considering time-domain MURE. The parameters of thresholding function are obtained by minimizing the unbiased estimator MURE. We show that the parameters for optimal MURE are very close to the optimal parameters considering the oracle MSE. Experiments show that the SNR improvement for the proposed denoising algorithm is competitive with a state-of-the-art method.
Resumo:
Boldyreva, Palacio and Warinschi introduced a multiple forking game as an extension of general forking. The notion of (multiple) forking is a useful abstraction from the actual simulation of cryptographic scheme to the adversary in a security reduction, and is achieved through the intermediary of a so-called wrapper algorithm. Multiple forking has turned out to be a useful tool in the security argument of several cryptographic protocols. However, a reduction employing multiple forking incurs a significant degradation of , where denotes the upper bound on the underlying random oracle calls and , the number of forkings. In this work we take a closer look at the reasons for the degradation with a tighter security bound in mind. We nail down the exact set of conditions for success in the multiple forking game. A careful analysis of the cryptographic schemes and corresponding security reduction employing multiple forking leads to the formulation of `dependence' and `independence' conditions pertaining to the output of the wrapper in different rounds. Based on the (in)dependence conditions we propose a general framework of multiple forking and a General Multiple Forking Lemma. Leveraging (in)dependence to the full allows us to improve the degradation factor in the multiple forking game by a factor of . By implication, the cost of a single forking involving two random oracles (augmented forking) matches that involving a single random oracle (elementary forking). Finally, we study the effect of these observations on the concrete security of existing schemes employing multiple forking. We conclude that by careful design of the protocol (and the wrapper in the security reduction) it is possible to harness our observations to the full extent.
Resumo:
The bilateral filter is known to be quite effective in denoising images corrupted with small dosages of additive Gaussian noise. The denoising performance of the filter, however, is known to degrade quickly with the increase in noise level. Several adaptations of the filter have been proposed in the literature to address this shortcoming, but often at a substantial computational overhead. In this paper, we report a simple pre-processing step that can substantially improve the denoising performance of the bilateral filter, at almost no additional cost. The modified filter is designed to be robust at large noise levels, and often tends to perform poorly below a certain noise threshold. To get the best of the original and the modified filter, we propose to combine them in a weighted fashion, where the weights are chosen to minimize (a surrogate of) the oracle mean-squared-error (MSE). The optimally-weighted filter is thus guaranteed to perform better than either of the component filters in terms of the MSE, at all noise levels. We also provide a fast algorithm for the weighted filtering. Visual and quantitative denoising results on standard test images are reported which demonstrate that the improvement over the original filter is significant both visually and in terms of PSNR. Moreover, the denoising performance of the optimally-weighted bilateral filter is competitive with the computation-intensive non-local means filter.
Resumo:
We address the problem of denoising images corrupted by multiplicative noise. The noise is assumed to follow a Gamma distribution. Compared with additive noise distortion, the effect of multiplicative noise on the visual quality of images is quite severe. We consider the mean-square error (MSE) cost function and derive an expression for an unbiased estimate of the MSE. The resulting multiplicative noise unbiased risk estimator is referred to as MURE. The denoising operation is performed in the wavelet domain by considering the image-domain MURE. The parameters of the denoising function (typically, a shrinkage of wavelet coefficients) are optimized for by minimizing MURE. We show that MURE is accurate and close to the oracle MSE. This makes MURE-based image denoising reliable and on par with oracle-MSE-based estimates. Analogous to the other popular risk estimation approaches developed for additive, Poisson, and chi-squared noise degradations, the proposed approach does not assume any prior on the underlying noise-free image. We report denoising results for various noise levels and show that the quality of denoising obtained is on par with the oracle result and better than that obtained using some state-of-the-art denoisers.