20 resultados para Delaunay triangulation
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper describes an approach based on Zernike moments and Delaunay triangulation for localization of hand-written text in machine printed text documents. The Zernike moments of the image are first evaluated and we classify the text as hand-written using the nearest neighbor classifier. These features are independent of size, slant, orientation, translation and other variations in handwritten text. We then use Delaunay triangulation to reclassify the misclassified text regions. When imposing Delaunay triangulation on the centroid points of the connected components, we extract features based on the triangles and reclassify the text. We remove the noise components in the document as part of the preprocessing step so this method works well on noisy documents. The success rate of the method is found to be 86%. Also for specific hand-written elements such as signatures or similar text the accuracy is found to be even higher at 93%.
Resumo:
The element-based piecewise smooth functional approximation in the conventional finite element method (FEM) results in discontinuous first and higher order derivatives across element boundaries Despite the significant advantages of the FEM in modelling complicated geometries, a motivation in developing mesh-free methods has been the ease with which higher order globally smooth shape functions can be derived via the reproduction of polynomials There is thus a case for combining these advantages in a so-called hybrid scheme or a `smooth FEM' that, whilst retaining the popular mesh-based discretization, obtains shape functions with uniform C-p (p >= 1) continuity One such recent attempt, a NURBS based parametric bridging method (Shaw et al 2008b), uses polynomial reproducing, tensor-product non-uniform rational B-splines (NURBS) over a typical FE mesh and relies upon a (possibly piecewise) bijective geometric map between the physical domain and a rectangular (cuboidal) parametric domain The present work aims at a significant extension and improvement of this concept by replacing NURBS with DMS-splines (say, of degree n > 0) that are defined over triangles and provide Cn-1 continuity across the triangle edges This relieves the need for a geometric map that could precipitate ill-conditioning of the discretized equations Delaunay triangulation is used to discretize the physical domain and shape functions are constructed via the polynomial reproduction condition, which quite remarkably relieves the solution of its sensitive dependence on the selected knotsets Derivatives of shape functions are also constructed based on the principle of reproduction of derivatives of polynomials (Shaw and Roy 2008a) Within the present scheme, the triangles also serve as background integration cells in weak formulations thereby overcoming non-conformability issues Numerical examples involving the evaluation of derivatives of targeted functions up to the fourth order and applications of the method to a few boundary value problems of general interest in solid mechanics over (non-simply connected) bounded domains in 2D are presented towards the end of the paper
Resumo:
This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.
Resumo:
A damage detection and imaging methodology based on symmetry of neighborhood sensor path and similarity of signal patterns with respect to radial paths in a circular array of sensors has been developed It uses information regarding Limb wave propagation along with a triangulation scheme to rapidly locate and quantify the severity of damage without using all of the sensor data. In a plate like structure, such a scheme can be effectively employed besides full field imaging of wave scattering pattern from the damage, if present in the plate. This new scheme is validated experimentally. Hole and corrosion type damages have been detected and quantified using the proposed scheme successfully. A wavelet based cumulative damage index has been studied which shows monotonic sensitivity against the severity of the damage. which is most desired in a Structural Health Monitoring system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.
Resumo:
For d >= 2, Walkup's class K (d) consists of the d-dimensional simplicial complexes all whose vertex-links are stacked (d - 1)-spheres. Kalai showed that for d >= 4, all connected members of K (d) are obtained from stacked d-spheres by finitely many elementary handle additions. According to a result of Walkup, the face vector of any triangulated 4-manifold X with Euler characteristic chi satisfies f(1) >= 5f(0) - 15/2 chi, with equality only for X is an element of K(4). Kuhnel observed that this implies f(0)(f(0) - 11) >= -15 chi, with equality only for 2-neighborly members of K(4). Kuhnel also asked if there is a triangulated 4-manifold with f(0) = 15, chi = -4 (attaining equality in his lower bound). In this paper, guided by Kalai's theorem, we show that indeed there is such a triangulation. It triangulates the connected sum of three copies of the twisted sphere product S-3 (sic) S-1. Because of Kuhnel's inequality, the given triangulation of this manifold is a vertex-minimal triangulation. By a recent result of Effenberger, the triangulation constructed here is tight. Apart from the neighborly 2-manifolds and the infinite family of (2d + 3)-vertex sphere products Sd-1 X S-1 (twisted for d odd), only fourteen tight triangulated manifolds were known so far. The present construction yields a new member of this sporadic family. We also present a self-contained proof of Kalai's result. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Brehm and Kuhnel proved that if M-d is a combinatorial d-manifold with 3d/2 + 3 vertices and \ M-d \ is not homeomorphic to Sd then the combinatorial Morse number of M-d is three and hence d is an element of {0, 2, 4, 8, 16} and \ M-d \ is a manifold like a projective plane in the sense of Eells and Kuiper. We discuss the existence and uniqueness of such combinatorial manifolds. We also present the following result: ''Let M-n(d) be a combinatorial d-manifold with n vertices. M-n(d) satisfies complementarity if and only if d is an element of {0, 2, 4, 8, 16} with n = 3d/2 + 3 and \ M-n(d) \ is a manifold like a projective plane''.
Resumo:
The symmetric group acts on the Cartesian product (S (2)) (d) by coordinate permutation, and the quotient space is homeomorphic to the complex projective space a'',P (d) . We used the case d=2 of this fact to construct a 10-vertex triangulation of a'',P (2) earlier. In this paper, we have constructed a 124-vertex simplicial subdivision of the 64-vertex standard cellulation of (S (2))(3), such that the -action on this cellulation naturally extends to an action on . Further, the -action on is ``good'', so that the quotient simplicial complex is a 30-vertex triangulation of a'',P (3). In other words, we have constructed a simplicial realization of the branched covering (S (2))(3)-> a'',P (3).
Resumo:
Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.
Resumo:
The application of computer-aided inspection integrated with the coordinate measuring machine and laser scanners to inspect manufactured aircraft parts using robust registration of two-point datasets is a subject of active research in computational metrology. This paper presents a novel approach to automated inspection by matching shapes based on the modified iterative closest point (ICP) method to define a criterion for the acceptance or rejection of a part. This procedure improves upon existing methods by doing away with the following, viz., the need for constructing either a tessellated or smooth representation of the inspected part and requirements for an a priori knowledge of approximate registration and correspondence between the points representing the computer-aided design datasets and the part to be inspected. In addition, this procedure establishes a better measure for error between the two matched datasets. The use of localized region-based triangulation is proposed for tracking the error. The approach described improves the convergence of the ICP technique with a dramatic decrease in computational effort. Experimental results obtained by implementing this proposed approach using both synthetic and practical data show that the present method is efficient and robust. This method thereby validates the algorithm, and the examples demonstrate its potential to be used in engineering applications.
Resumo:
A number of methods exist that use different approaches to assess geometric properties like the surface complementarity and atom packing at the protein-protein interface. We have developed two new and conceptually different measures using the Delaunay tessellation and interface slice selection to compute the surface complementarity and atom packing at the protein-protein interface in a straightforward manner. Our measures show a strong correlation among themselves and with other existing measures, and can be calculated in a highly time-efficient manner. The measures are discriminative for evaluating biological, as well as non-biological protein-protein contacts, especially from large protein complexes and large-scale structural studies(http://pallab.serc. iisc.ernet.in/nip_nsc). (C) 201 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
We present an elementary combinatorial proof of the existence and uniqueness of the 9-vertex triangulation of C P2. The original proof of existence, due to Kuhnel, as well as the original proof of uniqueness, due to Kuhnel and Lassmann, were based on extensive computer search. Recently Arnoux and Marin have used cohomology theory to present a computer-free proof. Our proof has the advantage of displaying a canonical copy of the affine plane over the three-element field inside this complex in terms of which the entire complex has a very neat and short description. This explicates the full automorphism group of the Kuhnel complex as a subgroup of the automorphism group of this affine plane. Our method also brings out the rich combinatorial structure inside this complex.
Resumo:
We present two constructions in this paper: (a) a 10-vertex triangulation CP(10)(2) of the complex projective plane CP(2) as a subcomplex of the join of the standard sphere (S(4)(2)) and the standard real projective plane (RP(6)(2), the decahedron), its automorphism group is A(4); (b) a 12-vertex triangulation (S(2) x S(2))(12) of S(2) x S(2) with automorphism group 2S(5), the Schur double cover of the symmetric group S(5). It is obtained by generalized bistellar moves from a simplicial subdivision of the standard cell structure of S(2) x S(2). Both constructions have surprising and intimate relationships with the icosahedron. It is well known that CP(2) has S(2) x S(2) as a two-fold branched cover; we construct the triangulation CP(10)(2) of CP(2) by presenting a simplicial realization of this covering map S(2) x S(2) -> CP(2). The domain of this simplicial map is a simplicial subdivision of the standard cell structure of S(2) x S(2), different from the triangulation alluded to in (b). This gives a new proof that Kuhnel's CP(9)(2) triangulates CP(2). It is also shown that CP(10)(2) and (S(2) x S(2))(12) induce the standard piecewise linear structure on CP(2) and S(2) x S(2) respectively.
Resumo:
We interpret a normal surface in a (singular) three-manifold in terms of the homology of a chain complex. This allows us to study the relation between normal surfaces and their quadrilateral coordinates. Specifically, we give a proof of an (unpublished) observation independently given by Casson and Rubinstein saying that quadrilaterals determine a normal surface up to vertex linking spheres. We also characterize the quadrilateral coordinates that correspond to a normal surface in a (possibly ideal) triangulation.
Resumo:
Delaunay and Gabriel graphs are widely studied geo-metric proximity structures. Motivated by applications in wireless routing, relaxed versions of these graphs known as Locally Delaunay Graphs (LDGs) and Lo-cally Gabriel Graphs (LGGs) have been proposed. We propose another generalization of LGGs called Gener-alized Locally Gabriel Graphs (GLGGs) in the context when certain edges are forbidden in the graph. Unlike a Gabriel Graph, there is no unique LGG or GLGG for a given point set because no edge is necessarily in-cluded or excluded. This property allows us to choose an LGG/GLGG that optimizes a parameter of interest in the graph. We show that computing an edge max-imum GLGG for a given problem instance is NP-hard and also APX-hard. We also show that computing an LGG on a given point set with dilation ≤k is NP-hard. Finally, we give an algorithm to verify whether a given geometric graph G= (V, E) is a valid LGG.