12 resultados para Defining surveillance
em Indian Institute of Science - Bangalore - Índia
Resumo:
This article addresses the problem of how to select the optimal combination of sensors and how to determine their optimal placement in a surveillance region in order to meet the given performance requirements at a minimal cost for a multimedia surveillance system. We propose to solve this problem by obtaining a performance vector, with its elements representing the performances of subtasks, for a given input combination of sensors and their placement. Then we show that the optimal sensor selection problem can be converted into the form of Integer Linear Programming problem (ILP) by using a linear model for computing the optimal performance vector corresponding to a sensor combination. Optimal performance vector corresponding to a sensor combination refers to the performance vector corresponding to the optimal placement of a sensor combination. To demonstrate the utility of our technique, we design and build a surveillance system consisting of PTZ (Pan-Tilt-Zoom) cameras and active motion sensors for capturing faces. Finally, we show experimentally that optimal placement of sensors based on the design maximizes the system performance.
Resumo:
Design considerations are presented for a dense weather radar network to support multiple services including aviation. Conflicts, tradeoffs and optimization issues in the context of operation in a tropical region are brought out. The upcoming Indian radar network is used as a case study. Algorithms for data mosaicing are briefly outlined.
Resumo:
The insulin-like growth factors (IGEs; IGF-1 and IGF-2) play central roles in cell growth, differentiation, survival, transformation and metastasis. The biologic effects of the IGFs are mediated by the IGF-1 receptor (IGF-1R), a receptor tyrosine kinase with homology to the insulin receptor (IR). Dysregulation of the ICE system is well recognized as a key contributor to the progression of multiple cancers, with IGF-1R activation increasing the tumorigenic potential of breast, prostate, lung, colon and head and neck squamous cell carcinoma (HNSCC). Despite this relationship, targeting the IGF-1R has only recently undergone development as a molecular cancer therapeutic. As it has taken hold, we are witnessing a robust increase and interest in targeting the inhibition of IGF-1R signaling. This is accentuated by the list of over 30 drugs, including monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs) that are under evaluation as single agents or in combination therapies 1]. The ICE-binding proteins (IGFBPs) represent the third component of the ICE system consisting of a class of six soluble secretory proteins. They represent a unique class of naturally occurring ICE-antagonists that bind to and sequester IGF-1 and IGF-2, inhibiting their access to the IGF-1R. Due to their dual targeting of the IGFs without affecting insulin action, the IGFBPs are an untapped ``third'' class of IGF-1R inhibitors. in this commentary, we highlight some of the significant aspects of and prospects for targeting the IGF-1R and describe what the future may hold. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In the present work, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We employ a technique to accurately control the structural damping, enabling the system to take on both negative and positive damping. This permits a systematic study of the effects of system mass and damping on the peak vibration response. Previous experiments over the last 30 years indicate a large scatter in peak-amplitude data ($A^*$) versus the product of mass–damping ($\alpha$), in the so-called ‘Griffin plot’. A principal result in the present work is the discovery that the data collapse very well if one takes into account the effect of Reynolds number ($\mbox{\textit{Re}}$), as an extra parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping ($A^*_{{\alpha}{=}0}$), for a compilation of experiments over a wide range of $\mbox{\textit{Re}}\,{=}\,500-33000$, are very well represented by the functional form $A^*_{\alpha{=}0} \,{=}\, f(\mbox{\textit{Re}}) \,{=}\, \log(0.41\,\mbox{\textit{Re}}^{0.36}$). For a given $\mbox{\textit{Re}}$, the amplitude $A^*$ appears to be proportional to a function of mass–damping, $A^*\propto g(\alpha)$, which is a similar function over all $\mbox{\textit{Re}}$. A good best-fit for a wide range of mass–damping and Reynolds number is thus given by the following simple expression, where $A^*\,{=}\, g(\alpha)\,f(\mbox{\textit{Re}})$: \[ A^* \,{=}\,(1 - 1.12\,\alpha + 0.30\,\alpha^2)\,\log (0.41\,\mbox{\textit{Re}}^{0.36}). \] In essence, by using a renormalized parameter, which we define as the ‘modified amplitude’, $A^*_M\,{=}\,A^*/A^*_{\alpha{=}0}$, the previously scattered data collapse very well onto a single curve, $g(\alpha)$, on what we refer to as the ‘modified Griffin plot’. There has also been much debate over the last three decades concerning the validity of using the product of mass and damping (such as $\alpha$) in these problems. Our results indicate that the combined mass–damping parameter ($\alpha$) does indeed collapse peak-amplitude data well, at a given $\mbox{\textit{Re}}$, independent of the precise mass and damping values, for mass ratios down to $m^*\,{=}\,1$.
Resumo:
This paper addresses the problem of how to select the optimal number of sensors and how to determine their placement in a given monitored area for multimedia surveillance systems. We propose to solve this problem by obtaining a novel performance metric in terms of a probability measure for accomplishing the task as a function of set of sensors and their placement. This measure is then used to find the optimal set. The same measure can be used to analyze the degradation in system 's performance with respect to the failure of various sensors. We also build a surveillance system using the optimal set of sensors obtained based on the proposed design methodology. Experimental results show the effectiveness of the proposed design methodology in selecting the optimal set of sensors and their placement.
Resumo:
This work proposes a boosting-based transfer learning approach for head-pose classification from multiple, low-resolution views. Head-pose classification performance is adversely affected when the source (training) and target (test) data arise from different distributions (due to change in face appearance, lighting, etc). Under such conditions, we employ Xferboost, a Logitboost-based transfer learning framework that integrates knowledge from a few labeled target samples with the source model to effectively minimize misclassifications on the target data. Experiments confirm that the Xferboost framework can improve classification performance by up to 6%, when knowledge is transferred between the CLEAR and FBK four-view headpose datasets.
Resumo:
This paper discusses a novel high-speed approach for human action recognition in H. 264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of our work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can effect in reduced hardware utilization and fast recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust in outdoor as well as indoor testing scenarios. We have tested our method on two benchmark action datasets and achieved more than 85% accuracy. The proposed algorithm classifies actions with speed (>2000 fps) approximately 100 times more than existing state-of-the-art pixel-domain algorithms.
Resumo:
Head pose classification from surveillance images acquired with distant, large field-of-view cameras is difficult as faces are captured at low-resolution and have a blurred appearance. Domain adaptation approaches are useful for transferring knowledge from the training (source) to the test (target) data when they have different attributes, minimizing target data labeling efforts in the process. This paper examines the use of transfer learning for efficient multi-view head pose classification with minimal target training data under three challenging situations: (i) where the range of head poses in the source and target images is different, (ii) where source images capture a stationary person while target images capture a moving person whose facial appearance varies under motion due to changing perspective, scale and (iii) a combination of (i) and (ii). On the whole, the presented methods represent novel transfer learning solutions employed in the context of multi-view head pose classification. We demonstrate that the proposed solutions considerably outperform the state-of-the-art through extensive experimental validation. Finally, the DPOSE dataset compiled for benchmarking head pose classification performance with moving persons, and to aid behavioral understanding applications is presented in this work.
Resumo:
A regular secondary structure is described by a well defined set of values for the backbone dihedral angles (phi,psi and omega) in a polypeptide chain. However in real protein structures small local variations give rise to distortions from the ideal structures, which can lead to considerable variation in higher order organization. Protein structure analysis and accurate assignment of various structural elements, especially their terminii, are important first step in protein structure prediction and design. Various algorithms are available for assigning secondary structure elements in proteins but some lacunae still exist. In this study, results of a recently developed in-house program ASSP have been compared with those from STRIDE, in identification of alpha-helical regions in both globular and membrane proteins. It is found that, while a combination of hydrogen bond patterns and backbone torsional angles (phi-psi) are generally used to define secondary structure elements, the geometry of the C-alpha atom trace by itself is sufficient to define the parameters of helical structures in proteins. It is also possible to differentiate the various helical structures by their C-alpha trace and identify the deviations occurring both at mid-positions as well as at the terminii of alpha-helices, which often lead to occurrence of 3(10) and pi-helical fragments in both globular and membrane proteins.
Resumo:
H. 264/advanced video coding surveillance video encoders use the Skip mode specified by the standard to reduce bandwidth. They also use multiple frames as reference for motion-compensated prediction. In this paper, we propose two techniques to reduce the bandwidth and computational cost of static camera surveillance video encoders without affecting detection and recognition performance. A spatial sampler is proposed to sample pixels that are segmented using a Gaussian mixture model. Modified weight updates are derived for the parameters of the mixture model to reduce floating point computations. A storage pattern of the parameters in memory is also modified to improve cache performance. Skip selection is performed using the segmentation results of the sampled pixels. The second contribution is a low computational cost algorithm to choose the reference frames. The proposed reference frame selection algorithm reduces the cost of coding uncovered background regions. We also study the number of reference frames required to achieve good coding efficiency. Distortion over foreground pixels is measured to quantify the performance of the proposed techniques. Experimental results show bit rate savings of up to 94.5% over methods proposed in literature on video surveillance data sets. The proposed techniques also provide up to 74.5% reduction in compression complexity without increasing the distortion over the foreground regions in the video sequence.