2 resultados para Defectors
em Indian Institute of Science - Bangalore - Índia
Resumo:
Cooperation among unrelated individuals is an enduring evolutionary riddle and a number of possible solutions have been suggested. Most of these suggestions attempt to refine cooperative strategies, while little attention is given to the fact that novel defection strategies can also evolve in the population. Especially in the presence of punishment to the defectors and public knowledge of strategies employed by the players, a defecting strategy that avoids getting punished by selectively cooperating only with the punishers can get a selective benefit over non-conditional defectors. Furthermore, if punishment ensures cooperation from such discriminating defectors, defectors who punish other defectors can evolve as well. We show that such discriminating and punishing defectors can evolve in the population by natural selection in a Prisoner’s Dilemma game scenario, even if discrimination is a costly act. These refined defection strategies destabilize unconditional defectors. They themselves are, however, unstable in the population. Discriminating defectors give selective benefit to the punishers in the presence of non-punishers by cooperating with them and defecting with others. However, since these players also defect with other discriminators they suffer fitness loss in the pure population. Among the punishers, punishing cooperators always benefit in contrast to the punishing defectors, as the latter not only defect with other punishing defectors but also punish them and get punished. As a consequence of both these scenarios, punishing cooperators get stabilized in the population. We thus show ironically that refined defection strategies stabilize cooperation. Furthermore, cooperation stabilized by such defectors can work under a wide range of initial conditions and is robust to mistakes.
Resumo:
We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.