6 resultados para Davidson, Donald

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rae and Davidson have found a striking connection between the averaging method generalised by Kruskal and the diagram technique used by the Brussels school in statistical mechanics. They have considered conservative systems whose evolution is governed by the Liouville equation. In this paper we have considered a class of dissipative systems whose evolution is governed not by the Liouville equation but by the last-multiplier equation of Jacobi whose Fourier transform has been shown to be the Hopf equation. The application of the diagram technique to the interaction representation of the Jacobi equation reveals the presence of two kinds of interactions, namely the transition from one mode to another and the persistence of a mode. The first kind occurs in the treatment of conservative systems while the latter type is unique to dissipative fields and is precisely the one that determines the asymptotic Jacobi equation. The dynamical equations of motion equivalent to this limiting Jacobi equation have been shown to be the same as averaged equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corepresentations of a coalgebra over a quadratic operad are defined, and various characterizations of them are given. Cohomology of such an operadic coalgebra with coefficients in a corepresentation is then studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CMPs enable simultaneous execution of multiple applications on the same platforms that share cache resources. Diversity in the cache access patterns of these simultaneously executing applications can potentially trigger inter-application interference, leading to cache pollution. Whereas a large cache can ameliorate this problem, the issues of larger power consumption with increasing cache size, amplified at sub-100nm technologies, makes this solution prohibitive. In this paper in order to address the issues relating to power-aware performance of caches, we propose a caching structure that addresses the following: 1. Definition of application-specific cache partitions as an aggregation of caching units (molecules). The parameters of each molecule namely size, associativity and line size are chosen so that the power consumed by it and access time are optimal for the given technology. 2. Application-Specific resizing of cache partitions with variable and adaptive associativity per cache line, way size and variable line size. 3. A replacement policy that is transparent to the partition in terms of size, heterogeneity in associativity and line size. Through simulation studies we establish the superiority of molecular cache (caches built as aggregations of molecules) that offers a 29% power advantage over that of an equivalently performing traditional cache.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report Doppler-only radar observations of Icarus at Goldstone at a transmitter frequency of 8510 MHz (3.5 cm wavelength) during 8-10 June 1996, the first radar detection of the object since 1968. Optimally filtered and folded spectra achieve a maximum opposite-circular (OC) polarization signal-to-noise ratio of about 10 and help to constrain Icarus' physical properties. We obtain an OC radar cross section of 0.05 km(2) (with a 35% uncertainty), which is less than values estimated by Goldstein (1969) and by Pettengill et al. (1969), and a circular polarization (SC/OC) ratio of 0.5+/-0.2. We analyze the echo power spectrum with a model incorporating the echo bandwidth B and a spectral shape parameter it, yielding a coupled constraint between B and n. We adopt 25 Hz as the lower bound on B, which gives a lower bound on the maximum pole-on breadth of about 0.6 km and upper bounds on the radar and optical albedos that are consistent with Icarus' tentative QS classification. The observed circular polarization ratio indicates a very rough near-surface at spatial scales of the order of the radar wavelength. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.Cambridge University Press, 2006. [2] H. Bolcskei, D. Gesbert, C. B. Papadias, and A.-J. van der Veen, Spacetime Wireless Systems: From Array Processing to MIMO Communications.Cambridge University Press, 2006. [3] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multiuser MIMO downlink,” IEEE Commun. Mag.,vol. 42, pp. 60–67, Oct. 2004. [4] K. Kusume, M. Joham,W. Utschick, and G. Bauch, “Efficient tomlinsonharashima precoding for spatial multiplexing on flat MIMO channel,”in Proc. IEEE ICC’2005, May 2005, pp. 2021–2025. [5] R. Fischer, C. Windpassinger, A. Lampe, and J. Huber, “MIMO precoding for decentralized receivers,” in Proc. IEEE ISIT’2002, 2002, p.496. [6] M. Schubert and H. Boche, “Iterative multiuser uplink and downlink beamforming under SINR constraints,” IEEE Trans. Signal Process.,vol. 53, pp. 2324–2334, Jul. 2005. [7] ——, “Solution of multiuser downlink beamforming problem with individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53, pp.18–28, Jan. 2004. [8] A. Wiesel, Y. C. Eldar, and Shamai, “Linear precoder via conic optimization for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 52,pp. 161–176, Jan. 2006. [9] N. Jindal, “MIMO broadcast channels with finite rate feed-back,” in Proc. IEEE GLOBECOM’2005, Nov. 2005. [10] R. Hunger, F. Dietrich, M. Joham, and W. Utschick, “Robust transmit zero-forcing filters,” in Proc. ITG Workshop on Smart Antennas, Munich,Mar. 2004, pp. 130–137. [11] M. B. Shenouda and T. N. Davidson, “Linear matrix inequality formulations of robust QoS precoding for broadcast channels,” in Proc.CCECE’2007, Apr. 2007, pp. 324–328. [12] M. Payaro, A. Pascual-Iserte, and M. A. Lagunas, “Robust power allocation designs for multiuser and multiantenna downlink communication systems through convex optimization,” IEEE J. Sel. Areas Commun.,vol. 25, pp. 1392–1401, Sep. 2007. [13] M. Biguesh, S. Shahbazpanahi, and A. B. Gershman, “Robust downlink power control in wireless cellular systems,” EURASIP Jl. Wireless Commun. Networking, vol. 2, pp. 261–272, 2004. [14] B. Bandemer, M. Haardt, and S. Visuri, “Liner MMSE multi-user MIMO downlink precoding for users with multple antennas,” in Proc.PIMRC’06, Sep. 2006, pp. 1–5. [15] J. Zhang, Y. Wu, S. Zhou, and J. Wang, “Joint linear transmitter and receiver design for the downlink of multiuser MIMO systems,” IEEE Commun. Lett., vol. 9, pp. 991–993, Nov. 2005. [16] S. Shi, M. Schubert, and H. Boche, “Downlink MMSE transceiver optimization for multiuser MIMO systems: Duality and sum-mse minimization,”IEEE Trans. Signal Process., vol. 55, pp. 5436–5446, Nov.2007. [17] A. Mezghani, M. Joham, R. Hunger, and W. Utschick, “Transceiver design for multi-user MIMO systems,” in Proc. WSA 2006, Mar. 2006. [18] R. Doostnejad, T. J. Lim, and E. Sousa, “Joint precoding and beamforming design for the downlink in a multiuser MIMO system,” in Proc.WiMob’2005, Aug. 2005, pp. 153–159. [19] N. Vucic, H. Boche, and S. Shi, “Robust transceiver optimization in downlink multiuser MIMO systems with channel uncertainty,” in Proc.IEEE ICC’2008, Beijing, China, May 2008. [20] A. Ben-Tal and A. Nemirovsky, “Selected topics in robust optimization,”Math. Program., vol. 112, pp. 125–158, Feb. 2007. [21] D. Bertsimas and M. Sim, “Tractable approximations to robust conic optimization problems,” Math. Program., vol. 107, pp. 5–36, Jun. 2006. [22] P. Ubaidulla and A. Chockalingam, “Robust Transceiver Design for Multiuser MIMO Downlink,” in Proc. IEEE Globecom’2008, New Orleans, USA, Dec. 2008, to appear. [23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004. [24] G. H. Golub and C. F. V. Loan, Matrix Computations. The John Hopkins University Press, 1996.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical modeling is used to explain the origin of the large ON/OFF ratios, ultralow leakage, and high ON-current densities exhibited by back-end-of-the-line-friendly access devices based on copper-containing mixed-ionic-electronic-conduction (MIEC) materials. Hall effect measurements confirm that the electronic current is hole dominated; a commercial semiconductor modeling tool is adapted to model MIEC. Motion of large populations of copper ions and vacancies leads to exponential increases in hole current, with a turn-ON voltage that depends on material bandgap. Device simulations match experimental observations as a function of temperature, electrode aspect ratio, thickness, and device diameter.