2 resultados para DUPIN HYPERSURFACES
em Indian Institute of Science - Bangalore - Índia
Resumo:
We prove that any arithmetically Gorenstein curve on a smooth, general hypersurface of degree at least 6, is a complete intersection. This gives a characterisation of complete intersection curves on general type hypersurfaces in . We also verify that certain 1-cycles on a general quintic hypersurface are non-trivial elements of the Griffiths group.
Resumo:
Let M, M' be smooth, real analytic hypersurfaces of finite type in C-n and f a holomorphic correspondence (not necessarily proper) that is defined on one side of M, extends continuously up to M and maps M to M-t. It is shown that f must extend across M as a locally proper holonnorphic correspondence. This is a version for correspondences of the Diederich-Pinchuk extension result for CR maps.