8 resultados para DSpace

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

THE use of NMR to investigate the quality of the oil as a function of maturity of the seeds is demonstrated for sunflower seeds. The percentages of the saturated and individual unsaturated aids are determined as a function of time after flowering of the seeds. The percentage of saturated fatty acids is found to decrease with maturity of seeds whereas the extent of the unsaturated acids increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NMR spectra of 2-fluoropyridine in two nematic liquid crystal solvents have been investigated. The direct dipole-dipole coupling constants thus derived have been used to obtain the structural information. The values of the interproton distance ratios arc found to be similar to those in pyridine. The results indicate negligible anisotropic contributions of lH-l9F indirect couplings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this study is the multi-mode structural vibration control in the composite fin-tip of an aircraft. Structural model of the composite fin-tip with surface bonded piezoelectric actuators is developed using the finite element method. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes accurately. A model order reduction technique is employed for reducing the finite element structural matrices before developing the controller. Particle swarm based evolutionary optimization technique is used for optimal placement of piezoelectric patch actuators and accelerometer sensors to suppress vibration. H{infty} based active vibration controllers are designed directly in the discrete domain and implemented using dSpace® (DS-1005) electronic signal processing boards. Significant vibration suppression in the multiple bending modes of interest is experimentally demonstrated for sinusoidal and band limited white noise forcing functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a new design configuration for a carbon nanotube (CNT) array based pulsed field emission device to stabilize the field emission current. In the new design, we consider a pointed height distribution of the carbon nanotube array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam of electrons localized at the center of the array. The randomly oriented CNTs are assumed to be grown on a metallic substrate in the form of a thin film. A model of field emission from an array of CNTs under diode configuration was proposed and validated by experiments. Despite high output, the current in such a thin film device often decays drastically. The present paper is focused on understanding this problem. The random orientation of the CNTs and the electromechanical interaction are modeled to explain the self-assembly. The degraded state of the CNTs and the electromechanical force are employed to update the orientation of the CNTs. Pulsed field emission current at the device scale is finally obtained by using the Fowler-Nordheim equation by considering a dynamic electric field across the cathode and the anode and integration of current densities over the computational cell surfaces on the anode side. Furthermore we compare the subsequent performance of the pointed array with the conventionally used random and uniform arrays and show that the proposed design outperforms the conventional designs by several orders of magnitude. Based on the developed model, numerical simulations aimed at understanding the effects of various geometric parameters and their statistical features on the device current history are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For high performance aircrafts, the flight control system needs to be quite effective in both assuring accurate tracking of pilot commands, while simultaneously assuring overall stability of the aircraft. In addition, the control system must also be sufficiently robust to cater to possible parameter variations. The primary aim of this paper is to enhance the robustness of the controller for a HPA using neuro-adaptive control design. Here the architecture employs a network of Gaussian Radial basis functions to adaptively compensate for the ignored system dynamics. A stable weight mechanism is determined using Lyapunov theory. The network construction and performance of the resulting controller are illustrated through simulations with a low-fidelity six –DOF model of F16 that is available in open literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trajectory optimization of a generic launch vehicle is considered in this paper. The trajectory from launch point to terminal injection point is divided in to two segments. The first segment deals with launcher clearance and vertical raise of the vehicle. During this phase, a nonlinear feedback guidance loop is incorporated to assure vertical raise in presence of thrust misalignment, centre of gravity offset, wind disturbance etc. and possibly to clear obstacles as well. The second segment deals with the trajectory optimization, where the objective is to ensure desired terminal conditions as well as minimum control effort and minimum structural loading in the high dynamic pressure region. The usefulness of this dynamic optimization problem formulation is demonstrated by solving it using the classical Gradient method. Numerical results for both the segments are presented, which clearly brings out the potential advantages of the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the topology selection, design steps, simulation studies, design verification, system fabrication and performance evaluation on an induction motor based dynamometer system. The control algorithm used the application is well known field oriented control or vector control. Position sensorless scheme is adopted to eliminate the encoder requirement. The dynamometer is rated for 3.7kW. It can be used to determine the speed–torque characteristics of any rotating system. The rotating system is to be coupled with the vector controlled drive and the required torque command is given from the latter. The experimental verification is carried out for an open loop v/f drive as a test rotating system and important test results are presented.