302 resultados para DOUBLE-WELL OSCILLATOR
em Indian Institute of Science - Bangalore - Índia
Resumo:
We consider a suspended elastic rod under longitudinal compression. The compression can be used to adjust potential energy for transverse displacements from the harmonic to the double well regime. The two minima in potential energy curve describe two possible buckled states. Using transition state theory (TST) we have calculated the rate of conversion from one state to other. If the strain epsilon = 4 epsilon c the simple TST rate diverges. We suggest a method to correct this divergence for quantum calculations. We also find that zero point energy contributions can be quite large so that single mode calculations can lead to large errors in the rate.
Resumo:
We consider the Kramers problem for a long chain polymer trapped in a biased double-well potential. Initially the polymer is in the less stable well and it can escape from this well to the other well by the motion of its N beads across the barrier to attain the configuration having lower free energy. In one dimension we simulate the crossing and show that the results are in agreement with the kink mechanism suggested earlier. In three dimensions, it has not been possible to get an analytical `kink solution' for an arbitrary potential; however, one can assume the form of the solution of the nonlinear equation as a kink solution and then find a double-well potential in three dimensions. To verify the kink mechanism, simulations of the dynamics of a discrete Rouse polymer model in a double well in three dimensions are carried out. We find that the time of crossing is proportional to the chain length, which is in agreement with the results for the kink mechanism. The shape of the kink solution is also in agreement with the analytical solution in both one and three dimensions.
Resumo:
We report theoretical investigations on some [Ring]Li--(+) compounds, which can exhibit a through ring umbrella like inversion. Our studies predict cyclononatetraenyllithium to be molecular rattle, in which such inversions can occur. The potential energy for the motion is a double well, with an activation barrier of 11.50 kcal/mol. We find that the lithium should go through the ring easily by an excitation to nu = 17 vibrational level. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present a critical investigation on the structural, magnetic, and magnetotransport properties of two sets of polycrystalline SrRuO3 samples with uniquely defined ferromagnetic transition temperatures. The ac magnetic susceptibility study exhibits the remarkable memory effect, a distinct characteristic of glassy behavior, at low temperatures. The transport study suggests a crossover from Fermi-liquid to non-Fermi-liquid behavior. Most strikingly, the temperature-dependent magnetoresistance exhibits two distinct dips (one around ferromagnetic ordering temperature and the other around 50 K), resembling a double-well potential in appearance. In addition, the temperature-dependent coercive field shows a plateau around 50 K. An attempt has been made to employ neutron diffraction to understand the genesis of such unusual low-temperature magnetic features. From the neutron-diffraction study, we find the evidence for changes in the unit-cell lattice parameters around 60 K and, thus, believe that the low-temperature anomalous magnetic response is closely intertwined to lattice-parameter change.
Resumo:
Single crystal [(111) and (100) planes], and powder ESR of Mn2+ (substituting for Ca2+) in Ca2Ba(C2H5COO)6 in the temperature range 220°C to -160°C shows (i) a doubling of both the physically and chemically inequivalent sites, and a change in the magnitude (150 G at -6°C to 170 G at -8°C) as well as the orientation of the D tensor across the -6°C transition and (ii) an inflection point in the D vs T plot across the -75°C transition. The oxygen octahedra around the Ca2+ sites are inferred to undergo alternate rotations, showing the participation of the carboxyl oxygens in the -6°C transition. A relation of the type D=D0(1+αT+βT2) seems to fit the D variation satisfactorily.
Resumo:
With high-resolution photoemission spectroscopy measurements, the density of states (DOS) near the Fermi level (E-F) of double perovskite Sr2FeMoO6 having different degrees of Fe/Mo antisite disorder has been investigated with varying temperature. The DOS near E-F showed a systematic depletion with increasing degree of disorder, and recovered with increasing temperature. Altshuler-Aronov (AA) theory of disordered metals well explains the dependences of the experimental results. Scaling analysis of the spectra provides experimental indication for the functional form of the AA DOS singularity.
Resumo:
The critical behavior of osmotic susceptibility in an aqueous electrolyte mixture 1-propanol (1P)+water (W)+potassium chloride is reported. This mixture exhibits re-entrant phase transitions and has a nearly parabolic critical line with its apex representing a double critical point (DCP). The behavior of the susceptibility exponent is deduced from static light-scattering measurements, on approaching the lower critical solution temperatures (TL’s) along different experimental paths (by varying t) in the one-phase region. The light-scattering data analysis substantiates the existence of a nonmonotonic crossover behavior of the susceptibility exponent in this mixture. For the TL far away from the DCP, the effective susceptibility exponent γeff as a function of t displays a nonmonotonic crossover from its single limit three-dimensional (3D)-Ising value ( ∼ 1.24) toward its mean-field value with increase in t. While for that closest to the DCP, γeff displays a sharp, nonmonotonic crossover from its nearly doubled 3D-Ising value toward its nearly doubled mean-field value with increase in t. The renormalized Ising regime extends over a relatively larger t range for the TL closest to the DCP, and a trend toward shrinkage in the renormalized Ising regime is observed as TL shifts away from the DCP. Nevertheless, the crossover to the mean-field limit extends well beyond t>10−2 for the TL’s studied. The observed crossover behavior is attributed to the presence of strong ion-induced clustering in this mixture, as revealed by various structure probing techniques. As far as the critical behavior in complex or associating mixtures with special critical points (like the DCP) is concerned, our results indicate that the influence of the DCP on the critical behavior must be taken into account not only on the renormalization of the critical exponent but also on the range of the Ising regime, which can shrink with decrease in the influence of the DCP and with the extent of structuring in the system. The utility of the field variable tUL in analyzing re-entrant phase transitions is demonstrated. The effective susceptibility exponent as a function of tUL displays a nonmonotonic crossover from its asymptotic 3D-Ising value toward a value slightly lower than its nonasymptotic mean-field value of 1. This behavior in the nonasymptotic, high tUL region is interpreted in terms of the possibility of a nonmonotonic crossover to the mean-field value from lower values, as foreseen earlier in micellar systems.
Resumo:
Self-assembly of a rigid tripyridyl linker with a bidentate 90 degrees Pt(II) acceptor yielded a somewhat unusual double square cage, representing the first example of Pt(II) cage of such shape. Multinuclear NMR as well as single-crystal structure analysis characterized the cage.
Resumo:
Self-assembly of a rigid tripyridyl linker with a bidentate 90 degrees Pt(II) acceptor yielded a somewhat unusual double square cage, representing the first example of Pt(II) cage of such shape. Multinuclear NMR as well as single-crystal structure analysis characterized the cage.
Resumo:
In this paper, the study of a third-order mechanical oscillator is presented by demonstrating its equivalence to the well-known R.C. multivibrator with two additional reactive elements. The conditions for the oscillator's possession of periodic solutions are presented. It is also shown that under certain conditions, the study of the given third-order autonomous system can be reduced to the study of an equivalent second-order, non-autonomous system.
Resumo:
Antibodies raised against denatured DNA complexed with methylated bovine serum albumin have been reported to react with ssDNA but not with dsDNA. Using a highly sensitive avidin-biotin microELISA, we report that such antibodies also bind to dsDNA. Antibodies which reacted with ssDNA and dsDNA were found to be IgG type. The antibodies did not react with tRNA and rRNA. The binding of antibodies to dsDNA was partially inhibited dy individual deoxyribonucleotides. ssDNA as well as dsDNA inhibited the binding of antibodies to dsDNA. The binding of these antibodies to supercoiled and relaxed forms of pBR322 DNA was demonstrated by gel retardation assay. The cross-reaction with ssDNA was observed even after affinity purification on native DNA-cellulose. The antibodies were also shown to bind to poly(dA-dT)·poly(dA-dT)
Resumo:
Using path integrals, we derive an exact expression-valid at all times t-for the distribution P(Q,t) of the heat fluctuations Q of a Brownian particle trapped in a stationary harmonic well. We find that P(Q, t) can be expressed in terms of a modified Bessel function of zeroth order that in the limit t > infinity exactly recovers the heat distribution function obtained recently by Imparato et al. Phys. Rev. E 76, 050101(R) (2007)] from the approximate solution to a Fokker-Planck equation. This long-time result is in very good agreement with experimental measurements carried out by the same group on the heat effects produced by single micron-sized polystyrene beads in a stationary optical trap. An earlier exact calculation of the heat distribution function of a trapped particle moving at a constant speed v was carried out by van Zon and Cohen Phys. Rev. E 69, 056121 (2004)]; however, this calculation does not provide an expression for P(Q, t) itself, but only its Fourier transform (which cannot be analytically inverted), nor can it be used to obtain P(Q, t) for the case v=0.
Resumo:
Simple expansion chambers, the simplest of the muffler configurations, have very limited practical application due to the presence of periodic troughs in the transmission loss spectrum which drastically lower the overall transmission loss of the muffler. Tuned extended inlet and outlet can be designed to nullify three-fourths of these troughs, making use of the plane wave theory. These cancellations would not occur unless one altered the geometric lengths for the extended tube in order to incorporate the effect of evanescent higher-order modes (multidimensional effect) through end corrections or lumped inertance approximation at the area discontinuities or junctions. End corrections of the extended inlet and outlet have been studied by several researchers. However the effect of wall thickness of the inlet/outlet duct on end correction has not been studied explicitly. This has significant effect on the tuning of an extended inlet/outlet expansion chamber. It is investigated here experimentally as well as numerically (through use of 3-D FEM software) for stationary medium. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
NDDO-based (AM1) configuration interaction (CI) calculations have been used to calculate the wavelength and oscillator strengths of electronic absorptions in organic molecules and the results used in a sum-over-states treatment to calculate second-order-hyperpolarizabilities. The results for both spectra and hyperpolarizabilities are of acceptable quality as long as a suitable CI-expansion is used. We have found that using an active space of eight electrons in eight orbitals and including all single and pair-double excitations in the CI leads to results that agree well with experiment and that do not change significantly with increasing active space for most organic molecules. Calculated second-order hyperpolarizabilities using this type of CI within a sum-over-states calculation appear to be of useful accuracy.
Resumo:
The presence of two (4n+2)-electron conjugated systems in perpendicular planes results in considerable aromatic stabilization. Despite having two fewer hydrogens, the 6 pi e-2 sigma e 3,5-dehydrophenyl cation (C6H3+, 1) is 32.7 (CCSD(T)/6-31G**) and 35.2 kcal/mol (RMP4sdtq/6-3iG*//RMP2(fu)/6-31G*) more stable than the phenyl cation (evaluated by an isodesmic reaction involving benzene and m-dehydrobenzene (4)). Cation 1, the global C6H3+ minimum, is 11.7,24.2, 11.8, and 30.4 kcal/mol lower in energy than the 2,6- (11) and 3,4-dehydrophenyl (12) cations as well as the open-chain isomers 13 and 14 (RMP4sdtq/6-31G*//RMP2(fu)/6-31G* + ZPE(RMP2(fu)/6-31G*)). The stability of 1 is increased hyperconjugatively by 2,4,6-trisilyl substitution. The double aromaticity of 1 is indicated by the computed magnetic susceptibility exaltations (IGLO/II//RMP2(fu)/6-31G*) of -5.2, -6.8, -15, and -23.2 relative to 11, 12, 13, and 14, respectively. Thus, 1 fulfills the geometric, energetic, and magnetic criteria of aromaticity. The double aromaticity of the D-6h cyclo[6]carbon is apparent from the same criteria