123 resultados para DOMAIN OF ATTRACTION

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open reading frame (ORF) 2a of Sesbania mosaic virus (SeMV) codes for polyprotein 2a (Membrane anchor-protease-VPg-P10-P8). The C-terminal domain of SeMV polyprotein 2a was cloned, expressed and purified in order to functionally characterize it. The protein of size 8 kDa (P8) domain, like viral protein genome linked (VPg), was found to be natively unfolded and could bind to nucleic acids.Interestingly, P10-P8 but not P8 showed a novel Mg2+ dependent ATPase activity that was inhibited in the presence of poly A. In the absence of P8, the ATPase activity of the protein of size 10 kDa (P10) domain was reduced suggesting that the natively unfolded P8 domain influenced the P10 ATPase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-stranded DNA-binding proteins (SSB) play an important role in most aspects of DNA metabolism including DNA replication, repair, and recombination. We report here the identification and characterization of SSB proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis. Sequence comparison of M. smegmatis SSB revealed that it is homologous to M. tuberculosis SSB, except for a small spacer connecting the larger amino-terminal domain with the extreme carboxyl-terminal tail. The purified SSB proteins of mycobacteria bound single-stranded DNA with high affinity, and the association and dissociation constants were similar to that of the prototype SSB. The proteolytic signatures of free and bound forms of SSB proteins disclosed that DNA binding was associated with structural changes at the carboxyl-terminal domain. Significantly, SSB proteins from mycobacteria displayed high affinity for cognate RecA, whereas Escherichia coli SSB did not under comparable experimental conditions. Accordingly, SSB and RecA were coimmunoprecipitated from cell lysates, further supporting an interaction between these proteins in vivo. The carboxyl-terminal domain of M. smegmatis SSB, which is not essential for interaction with ssDNA, is the site of binding of its cognate RecA. These studies provide the first evidence for stable association of eubacterial SSB proteins with their cognate RecA, suggesting that these two proteins might function together during DNA repair and/or recombination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here a novel sensor for cGMP based on the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase 5 (PDE5) using bioluminescence resonance energy transfer (BRET). The wild type GAFa domain, capable of binding cGMP with high affinity, and a mutant (GAFaF163A) unable to bind cGMP were cloned as fusions between GFP and Rluc for BRET2 assays. BRET2 ratios of the wild type GAFa fusion protein, but not GAFaF163A, increased in the presence of cGMP but not cAMP. Higher basal BRET2 ratios were observed in cells expressing the wild type GAFa domain than in cells expressing GAFaF163A. This was correlated with elevated basal intracellular levels of cGMP, indicating that the GAF domain could act as a sink for cGMP. The tandem GAF domains in full length PDE5 could also sequester cGMP when the catalytic activity of PDE5 was inhibited. Therefore, these results describe a cGMP sensor utilizing BRET2 technology and experimentally demonstrate the reservoir of cGMP that can be present in cells that express cGMP-binding GAF domain-containing proteins. PDE5 is the target for the anti-impotence drug sildenafil citrate; therefore, this GAF-BRET2 sensor could be used for the identification of novel compounds that inhibit cGMP binding to the GAF domain, thereby regulating PDE5 catalytic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn2+, at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent crosslinking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C-terminal domain of Mycobacterium tuberculosis LexA has been crystallized in two different forms. The form 1 and form 2 crystals belonged to space groups P3(1)21 and P3(1), respectively. Form 1 contains one domain in the asymmetric unit, while form 2 contains six crystallographically independent domains. The structures have been solved by molecular replacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 A. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-kappa B signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key problem in helicopter aeroelastic analysis is the enormous computational time required for a numerical solution of the nonlinear system of algebraic equations required for trim, particularly when free wake models are used. Trim requires calculation of the main rotor and tail rotor controls and the vehicle attitude which leads to the six steady forces and moments about the helicopter center of gravity to be zero. An appropriate initial estimate of the trim state is needed for successful helicopter trim. This study aims to determine the control inputs that can have considerable effect on the convergence of trim solution in the aeroelastic analysis of helicopter rotors by investigating the basin of attraction of the nonlinear equations (set of initial guess points from which the nonlinear equations converge). It is illustrated that the three main rotor pitch controls of collective pitch, longitudinal cyclic pitch and lateral cyclic pitch have a significant contribution to the convergence of the trim solution. Trajectories of the Newton iterates are shown and some ideas for accelerating the convergence of a trim solution in the aeroelastic analysis of helicopters are proposed. It is found that the basins of attraction can have fractal boundaries. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta protein, a key component of Red-pathway of phage lambda is necessary for its growth and general genetic recombination in recombination-deficient mutants of Escherichia coli. To facilitate studies on structure-function relationships, we overexpressed beta protein and purified it to homogeneity. A chemical cross-linking reagent, glutaraldehyde, was used to stabilize the physical association of beta protein in solution. A 67-kDa band, corresponding to homodimer, was identified after separation by SDS-polyacrylamide gel electrophoresis. Stoichiometric measurements indicated a site-size of 1 monomer of beta protein/5 nucleotide residues. Electrophoretic gel mobility shift assays suggested that beta protein formed stable nucleoprotein complexes with 36-mer, but not with 27- or 17-mer DNA. Interestingly, the interaction of beta protein with DNA and the stability of nucleoprotein complexes was dependent on the presence of MgCl2, and the binding was abolished by 250 mM NaCl. The K-d of beta protein binding to 36-mer DNA was on the order of 1.8 x 10(-6) M. Photochemical cross-linking of native beta protein or its fragments, generated by chymotrypsin, to 36-mer DNA was performed to identify its DNA-binding domain. Characterization of the cross-linked peptide disclosed that amino acids required for DNA-binding specificity resided within a 20-kDa peptide at the N-terminal end. These findings provide a basis for further understanding oi the structure and function of beta protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mannose-binding lectin domain of MSMEG_3662 from Mycobacterium smegmatis has been cloned, expressed, purified and crystallized and the crystals have been characterized using X-ray diffraction. The Matthews coefficient suggests the possibility of two lectin domains in the triclinic cell. The amino-acid sequence of the domain indicates structural similarity to well characterized beta-prism II fold lectins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamics of the aircraft configuration considered in this paper show a unique characteristic in that there are no stable attractors in the entire high angle-of-attack flight envelope. As a result, once the aircraft has departed from the normal flight regime, no standard technique can be applied to recover the aircraft. In this paper, using feedback linearization technique, a nonlinear controller is designed at high angles of attack, which is engaged after the aircraft departs from normal flight regime. This controller stabilizes the aircraft into a stable spin. Then a set of synthetic pilot inputs is applied to cause an automatic transition from the spin equilibrium to low angles of attack where the second controller is connected. This controller is a normal gain-scheduled controller designed to have a large domain of attraction at low angles of attack. It traps the aircraft into a low angle-of-attack level flight. This entire concept of recovery has been verified using six-degrees-of-freedom nonlinear simulation. Feedback linearization technique used to design a controller ensures internal stability only if the nonlinear plant has stable zero dynamics. Because zero dynamics depend on the selection of outputs, a new method of choosing outputs is described to obtain a plant that has stable zero dynamics. Certain important aspects pertaining to the implementation of a feedback linearization-based controller are also discussed.