63 resultados para DNA data banks

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The conformational flexibility inherent in the polynucleotide chain plays an important role in deciding its three-dimensonal structure and enables it to undergo structural transitions in order to fulfil all its functions. Following certain stereochemical guidelines, both right and left handed double-helical models have been built in our laboratory and they are in reasonably good agreement with the fibre patterns for various polymorphous forms of DNA. Recently, nuclear magnetic resonance spectroscopy has become an important technique for studying the solution conformation and polymorphism of nucleic acids. Several workers have used 1H nuclear magnetic resonance nuclear Overhauser enhancement measurements to estimate the interproton distances for the various DNA oligomers and compared them with the interproton distances for particular models of A and Β form DNA. In some cases the solution conformation does not seem to fit either of these models. We have been studying various models for DNA with a view to exploring the full conformational space allowed for nucleic acid polymers. In this paper, the interproton distances calculated for the different stereochemically feasible models of DNA are presented and they are compared and correlated against those obtained from 1Η nuclear magnetic resonance nuclear Overhauser enhancement measurements of various nucleic acid oligomers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A-DNA pattern, obtained using a flat plat camera, was indexed by Fuller Image on the basis of a c-face centred monoclinic cell with A = 22.24 Å, B = 40.62 Å, C = 28.15 Å and β = 97.0°. A precession photograph of A-DNA which gives an undistorted picture of the lattice, showed that the unit cell parameters as given by Fuller Image were not quite correct. The precession photograph showed a strong meridional reflection (R = 0.00 Å−1) on the 11th layer line. But the occurrence of the meridional reflection on the 11th layer line could not be explained on the basis of the cell parameters given by Fuller Image ; using those cell parameters the reflection which comes closest to the meridian on 11th layer line is at R = 0.025 Å−1. However, a simple interchange of a and b values accounted for the meridional reflection on 11th layer line. The corrected cell parameter refined against 28 strong spots are A = 40.75 Å, B = 22.07 Å, C = 28.16 Å and β = 97.5°. In the new unit cell of A-DNA, the packing arrangement of the two molecules is different from that in the old one. Nonetheless, our earlier contention is again reaffirmed that both right and left-handed A-DNA are stereochemically allowed and consistent with the observed fibre pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferrocene-conjugated ternary copper(II) complexes [Cu(L)(B)](ClO4)(2), where L is FcCH(2)N(CH2Py)(2) (Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5)) and B is a phenanthroline base, viz., 2,2'-bipyridine (bpy, 1), 1, 10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4), have been synthesized and characterized by various spectroscopic and analytical techniques. The bpy complex 1, as its hexafluorophosphate salt, has been structurally characterized by X-ray crystallography. The molecular structure shows the copper(II) center having an essentially square-pyramidal coordination geometry in which L with a pendant ferrocenyl (Fc) moiety and bpy show respective tridentate and bidentate modes of binding to the metal center. The complexes are redox active, showing a reversible cyclic voltammetric response of the Fc(+)-Fc couple near 0.5 V vs SCE and a quasi-reversible Cu(II)-Cu(I) couple near 0.0 V. Complexes 2-4 show binding affinity to calf thymus (CT) DNA, giving binding constant (K-b) values in the range of 4.2 x 10(4) to 2.5 x 10(5) M-1. Thermal denaturation and viscometric titration data suggest groove binding and/or a partial intercalative mode of binding of the complexes to CT DNA. The complexes show good binding propensity to the bovine serum albumin (BSA) protein, giving K-BSA values of similar to 10(4) M-1 for the bpy and phen complexes and similar to 10(5) M-1 for the dpq and dppz complexes. Complexes 2-4 exhibit efficient chemical nuclease activity in the presence of 3-mercapto-propionic acid (MPA) as a reducing agent or hydrogen peroxide (H2O2) as an oxidizing agent. Mechanistic studies reveal formation of hydroxyl radicals as the reactive species. The dpq and dppz complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to visible light of different wavelengths including red light using an argon-krypton mixed gas ion laser. Mechanistic investigations using various inhibitors reveal the fort-nation of hydroxyl radicals in the DNA photocleavage reactions. The dppz complex 4, which shows efficient photoioduced BSA cleavage activity, is a potent multifunctional model nuclease and protease in the chemistry of photodynamic therapy (PDT) of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ternary L-glutamine (L-gln) copper(II) complexes [Cu(L-gln)(B)(H2O)](X) (B = 2,2'-bipyridine (bpy), X = 0.5SO(4)(2-), 1; B = 1,10-phenanthroline (phen), X = ClO4-, 2) and [Cu(L-gln)(dpq)(ClO4)] (3) (dpq, dipyridoquinoxaline) are prepared and characterized by physicochemical methods. The DNA binding and cleavage activity of the complexes have been studied. Complexes 1-3 are structurally characterized by X-ray crystallography. The complexes show distorted square pyramidal (4+1) CuN3O2 coordination geometry in which the N,O-donor amino acid and the N, N-donor heterocyclic base bind at the basal plane with a H2O or perchlorate as the axial ligand. The crystal structures of the complexes exhibit chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The complexes display a d-d electronic band in the range of 610-630 nm in aqueous-dimethylformamide (DMF) solution (9:1 v/v). The quasireversible cyclic voltammetric response observed near -0.1 V versus SCE in DMF-TBAP is assignable to the Cu(II)/Cu(I) couple. The binding affinity of the complexes to calf thymus (CT) DNA follows the order: 3 (dpq) > 2 (phen) >> 1 (bpy). Complexes 2 and 3 show DNA cleavage activity in dark in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent via a mechanistic pathway forming hydroxyl radical as the reactive species. The dpq complex 3 shows efficient photoinduced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency of the DNA minor groove binding complexes follows the order:3 > 2 >> 1. The dpq complex exhibits photocleavage of DNA on irradiation with visible light of 647.1 nm. Mechanistic data on the photo-induced DNA cleavage reactions reveal the involvement of singlet oxygen (O-1(2)) as the reactive species in a type-II pathway. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that left-handed duplexes are possible for A, B, and D forms of DNA. These duplexes are stereochemically satisfactory and are consistent with the observed x-ray intensity data. On scrutiny the refined right-handed models of B and D DNA by Arnott and coworkers are found to be stereochemically unacceptable. It was possible to formulate a stereochemical guideline for molecular model building based on theory and analysis of single-crystal structure data of dinucleoside monophosphate and higher oligomers. This led to both right- and left-handed DNA duplexes. The right-handed B and D DNA duplexes so obtained are stereochemically superior to earlier models and agree well with the observed x-ray intensity data. The observation that DNA can exist in either handedness for all the polymorphous forms of DNA at once explained A in equilibrium B and B in equilibrium D transitions. Hence it is confirmed that polymorphism of DNA is a reflection on the conformational flexibility inherent in DNA, the same cause that ultimately allows DNA in either handedness. The possibility of various types of right- and left-handed duplexes generated by using dinucleoside monophosphate and trinucleoside diphosphate as repeating units resulted in a variety of models, called RL models. All these models have alternating right and left helical segments and inverted stacking at the bend region as suggested by us earlier. It turns out that the B-Z DNA model of Wang et al. is only an example of RL models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An A-DNA type double helical conformation was observed in the single crystal X-ray structure of the octamer d(G-G-T-A-T-A-C-C), 1, and its 5-bromouracil-containing analogue, 2. The structure of the isomorphous crystals (space group P61) was solved by a search technique based on packing criteria and R-factor calculations, with use of only low order data. At the present stage of refinement the R factors are 31 % for 1 and 28 % for 2 at a resolution of 2.25 A (0.225 nm). The molecules interact through their minor grooves by hydrogen bonding and base to sugar van der Waals contacts. The stable A conformation observed in the crystal may have some structural relevance to promoter regions where the T-A-T-A sequence is frequently found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earlier, we showed that, for the D form (n = 8 and h = 3.03 A, where n is number of nucleotide units per turn and h is height per nucleotide unit) of poly[d(A-T)], both right- and left-handed double helical models are stereochemically satisfactory and give good agreement with the observed fiber diffraction data. It was also noted that the conformations of the right- and left-handed D-DNA models are very similar to those of the right- and left-handed B-DNA models. This observation was consistent with the D leads to B transition in the solid phase. As a continuation of our earlier studies, we have carried out similar experiments with poly[d(I-C)]. We could obtain a crystalline D-form pattern (n = 8, h = 3.13 A) of the fiber at 75% relative humidity (r.h.); the hydrated (r.h. approximately equal to 95%) form of the same fiber gave the classical B-form pattern (n = 10, h = 3.40 A). In the present report, we show that both right- and left-handed double-helical models are consistent with the fiber diffraction data of poly[d(I-C)] in the D-form. Theoretical energy calculations also suggest that the right- and left-handed B- and D-DNA models are almost equally stable. Hence, we conclude that the right- and left-handed double-helical models of poly[d(I-C)] in a given form (B or D) are equally likely and that the fiber diffraction data do not permit discrimination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three oxo-bridged diiron(III) complexes of L-histidine and heterocyclic bases [Fe-2(mu-O)(L-his)(2)(B)(2)](ClO4)(2) (1-3), where B is 2,2'-bipyridine (bpy),1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), were prepared and characterized. The bpy complex 1 was structurally characterized by X-ray crystallography. The molecular structure showed a {Fe-2(mu-O)} core in which iron(III) in a FeN4O2 coordination is bound to tridentate monoanionic L-histidine and bidentate bpy ligands. The Fe center dot center dot center dot Fe distance is similar to 3.5 angstrom. The Fe-O-Fe unit is essentially linear, giving a bond angle of similar to 172 degrees. The complexes showed irreversible cyclic voltammetric cathodic response near -0.1 V vs. SCE in H2O-0.1 M KCl. The binuclear units displayed antiferromagnetic interaction between two high-spin (S = 5/2) iron(III) centers giving a -J value of -110 cm(-1). The complexes showed good DNA binding propensity giving a binding constant value of similar to 10(5) M-1. Isothermal titration calorimetric data indicated single binding mode to the DNA. The binding was found to be driven by negative free energy change and enthalpy. The dpq complex 3 showed oxidative double-strand DNA cleavage on exposure to UV-A and visible light. The phen complex 2 displayed single-strand photocleavage of DNA. The DNA double-strand breaks were rationalized from theoretical molecular docking calculations. Mechanistic investigations showed formation of hydroxyl radicals as the reactive species through photodecarboxylation of the L-histidine ligand. The complexes exhibited good binding propensity to bovine serum albumin (BSA) protein in Tris-HCl/NaCl buffer medium. The dpq complex 3 showed UV-A light-induced site-specific oxidative BSA cleavage forming fragments of similar to 45 kDa and similar to 20 kDa molecular weights via SOH pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Left handed duplexes are shown to be in agreement with the X-ray intensity data of A-, B- and D-forms of DNA. The structures are stereochemically satisfactory because they were obtained following a stereochemical guideline derived from theory and single crystal structure data of nucleic acid components. The same stereochemical guideline also led to right handed duplexes for B- and D-forms of DNA which have stereochemically preferred conformation and hence are superior to those given by Arnott and coworkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ternary 3d-metal complexes of formulation [M(Tp(Ph))(py-nap)](ClO4)(1-3), where M is Co(II) (1), Cu(II) (2), and Zn(II) (3); Tp(Ph) is anionic tris (3-phenylpyrazolyl)borate; and py-nap is a pyridyl ligand with a conjugated 1,8-naphthalimide moiety, have been prepared from the reaction of metal perchlorate with KTp(Ph) and py-nap in CH2Cl2. The complexes have been characterized from analytical and physicochemical data. The complexes are stable in solution as evidenced from the electrospray ionization mass spectrometry data. The complexes show good binding propensity with calf thymus (CT) DNA, giving binding constant (K-b) values of similar to 10(5) M-1 and a molecular ``light-switch'' effect that results in an enhancement of the emission intensity of the naphthalimide chromophore on binding to CT DNA. The complexes do not show any hydrolytic cleavage of DNA. They show poor chemical nuclease activity in the presence of 3-mercaptopropionic acid or hydrogen peroxide (H2O2). The Co(II) and Cu(II) complexes exhibit oxidative pUC19 DNA cleavage activity in UV-A light of 365 rim. The Zn(II) complex shows moderate DNA photocleavage activity at 365 nm. The Cu(II)complex 2 displays photoinduced DNA cleavage activity in red light of 647.1 nm and 676 rim and near-IR light of >750 rim. A mechanistic studyin UV-A and visible light suggests the involvement of the hydroxyl radical as the reactive species in the DNA photocleavage reactions. The complexes also show good bovine serum albumin (BSA) protein binding propensity, giving K-BSA values of similar to 10(5) M-1. Complexes 1 and 2 display significant photoinduced BSA cleavage activity in UV-A light. The Co(II) complex 1 shows a significant photocytotoxic effect in HeLa cervical cancer cells on exposure to UV-A light of 365 nm, giving an IC50 value of 32 mu M. The IC50 value for the py-nap ligand alone is 41.42 mu m in UV-A light. The IC50 value is >200 mu M in the dark, indicating poor dark toxicity of 1. The Cu(II) complex 2 exhibits moderate photocytotoxicity and significant dark toxicity, giving IC50 values of 18.6 mu m and 29.7 mu m in UV-A light and in the dark, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of interaction of palladium(II) with calf thymus DNA was studied using viscometry, ultraviolet, visible and infrared spectrophotometry and optical rotatory disperison and circular dichroism measurements. The results indicate that Pd(II) interacts with both the phosphate and bases of DNA. The ORD/CD data indicate that the binding of Pd(II) to DNA brings about considerable conformational changes in DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid increase in genome sequence information has necessitated the annotation of their functional elements, particularly those occurring in the non-coding regions, in the genomic context. Promoter region is the key regulatory region, which enables the gene to be transcribed or repressed, but it is difficult to determine experimentally. Hence an in silico identification of promoters is crucial in order to guide experimental work and to pin point the key region that controls the transcription initiation of a gene. In this analysis, we demonstrate that while the promoter regions are in general less stable than the flanking regions, their average free energy varies depending on the GC composition of the flanking genomic sequence. We have therefore obtained a set of free energy threshold values, for genomic DNA with varying GC content and used them as generic criteria for predicting promoter regions in several microbial genomes, using an in-house developed tool `PromPredict'. On applying it to predict promoter regions corresponding to the 1144 and 612 experimentally validated TSSs in E. coli (50.8% GC) and B. subtilis (43.5% GC) sensitivity of 99% and 95% and precision values of 58% and 60%, respectively, were achieved. For the limited data set of 81 TSSs available for M. tuberculosis (65.6% GC) a sensitivity of 100% and precision of 49% was obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that DNA-binding proteins can slide along the DNA helix while searching for specific binding sites, but their path of motion remains obscure. Do these proteins undergo simple one-dimensional (1D) translational diffusion, or do they rotate to maintain a specific orientation with respect to the DNA helix? We measured 1D diffusion constants as a function of protein size while maintaining the DNA-protein interface. Using bootstrap analysis of single-molecule diffusion data, we compared the results to theoretical predictions for pure translational motion and rotation-coupled sliding along the DNA. The data indicate that DNA-binding proteins undergo rotation-coupled sliding along the DNA helix and can be described by a model of diffusion along the DNA helix on a rugged free-energy landscape. A similar analysis including the 1D diffusion constants of eight proteins of varying size shows that rotation-coupled sliding is a general phenomenon. The average free-energy barrier for sliding along the DNA was 1.1 +/- 0.2 k(B)T. Such small barriers facilitate rapid search for binding sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their ctive center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active-site residues essential for DNA cleavage activity. The implications of these results are discussed in this report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that data from recent experiments carried out on the kinetics of DNA escape from alpha-hemolysin nanopores [M. Wiggin, C. Tropini, C. T. Cossa, N. N. Jetha, and A. Marziali, Biophys. J. 95, 5317 (2008)] may be rationalized by a model of chain dynamics based on the anomalous diffusion of a particle moving in a harmonic well in the presence of a delta function sink. The experiments of Wiggin found, among other things, that the occasional occurrence of unusually long escape times in the distribution of chain trapping events led to nonexponential decays in the survival probability, S(t), of the DNA molecules within the nanopore. Wiggin ascribed this nonexponentiality to the existence of a distribution of trapping potentials, which they suggested was theresult of stochastic interactions between the bases of the DNA and the amino acids located on the surface of the nanopore. Based on this idea, they showed that the experimentally determined S(t) could be well fit in both the short and long time regimes by a function of the form (1+t/tau)(-alpha) (the so called Becquerel function). In our model, S(t) is found to be given by a Mittag-Leffler function at short times and by a generalized Mittag-Leffler function at long times. By suitable choice of certain parameter values, these functions are found to fit the experimental S(t) even better than the Becquerel function. Anomalous diffusion of DNA within the trap prior to escape over a barrier of fixed height may therefore provide a second, plausible explanation of the data, and may offer fresh perspectives on similar trapping and escape problems.