43 resultados para DNA - Research

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kinetic parameters for uracil DNA glycosylase (E.coli)-catalysed excision of uracil from DNA oligomers containing dUMP in different structural contexts were determined. Our results show that single-stranded oligonucleotides (unstructured) are used as somewhat better substrates than the double-stranded oligonucleotides. This is mainly because of the favourable V-max value of the enzyme for single-stranded substrates. More interestingly, however, we found that uracil release from loop regions of DNA hairpins is extremely inefficient. The poor efficiency with which uracil is excised from loop regions is a result of both increased K-m and lowered V-max values. This observation may have significant implications in uracil DNA glycosylase-directed repair of DNA segments that can be extruded as hairpins. In addition, these studies are useful in designing oligonucleotides for various applications in DNA research where the use of uracil DNA glycosylase is sought.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Screening and early identification of primary immunodeficiency disease (PID) genes is a major challenge for physicians. Many resources have catalogued molecular alterations in known PID genes along with their associated clinical and immunological phenotypes. However, these resources do not assist in identifying candidate PID genes. We have recently developed a platform designated Resource of Asian PDIs, which hosts information pertaining to molecular alterations, protein-protein interaction networks, mouse studies and microarray gene expression profiling of all known PID genes. Using this resource as a discovery tool, we describe the development of an algorithm for prediction of candidate PID genes. Using a support vector machine learning approach, we have predicted 1442 candidate PID genes using 69 binary features of 148 known PID genes and 3162 non-PID genes as a training data set. The power of this approach is illustrated by the fact that six of the predicted genes have recently been experimentally confirmed to be PID genes. The remaining genes in this predicted data set represent attractive candidates for testing in patients where the etiology cannot be ascribed to any of the known PID genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified strong topoisomerase sites (STS) for Mycobacteruim smegmatis topoisomerase I in double-stranded DNA context using electrophoretic mobility shift assay of enzyme-DNA covalent complexes; Mg2+, an essential component for DNA relaxation activity of the enzyme, is not required for binding to DNA, The enzyme makes single-stranded nicks, with transient covalent interaction at the 5'-end of the broken DNA strand, a characteristic akin to prokaryotic topoisomerases. More importantly, the enzyme binds to duplex DNA having a preferred site with high affinity, a. property similar to the eukaryotic type I topoisomerases, The preferred cleavage site is mapped on a 65 bp duplex DNA and found to be CG/TCTT. Thus, the enzyme resembles other prokaryotic type I topoisomerases in mechanistics of the reaction, but is similar to eukaryotic enzymes in DNA recognition properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies raised in rabbits against daoxyguanylate and daoxycytidylate bind to 3H-(lambda) double stranded DNA and the binding is base specific. The concentrations of antibody populations that bind to double stranded DNA are much less than those binding to denatured DNA. Due to their low concentrations, these antibodies ware not detected in earlier studies. These antibodies are expected to be useful to probe the conformational flexibilities of double stranded DNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gossypol, a polyphenolic compound isolated from cotton plant was found to degrade pBR322 DNA Image in a reaction which required the presence of a metal ion, a reducing agent (2-mercaptoethanol) and oxygen as revealed after agarose gel electrophoresis. Fe3+ and Co2+ showed maximum degradation whereas addition of Ca2+ and Mg2+ prevented the gossypol mediated DNA damage. Gossypol caused degradation of rat liver DNA incubated Image even in the absence of added metal ions and 2-mercaptoethanol. Incubation of intact rat liver nuclei with gossypol reveled DNA degradation and nuclei isolated from rats treated with gossypol Image showed higher succestibility to DNA fragmentation when incubated with gossypol Image than control nuclei. EcoRl and AIuI digestion of DNA isolated from gossypol treated rats gave clear cut evidence for DNA degradation. These observations indicate that gossypol is genotoxic and considereable care has to be exercised in its use. SDS, sodium dodecayl sulphate; TE buffer, Tris-HCL-EDTA buffer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a pH-dependent conformational transition in short, defined homopolymeric deoxyadenosines (dA(15)) from a single helical structure with stacked nucleobases at neutral pH to a double-helical, parallel-stranded duplex held together by AH-HA base pairs at acidic pH. Using native PAGE, 2D NMR, circular dichroism (CD) and fluorescence spectroscopy, we have characterized the two different pH dependent forms of dA(15). The pH-triggered transition between the two defined helical forms of dA(15) is characterized by CD and fluorescence. The kinetics of this conformational switch is found to occur on a millisecond time scale. This robust, highly reversible, pH-induced transition between the two well-defined structured states of dA(15)represents a new molecular building block for the construction of quick-response, pH-switchable architectures in structural DNA nanotechnology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two types of left-handed zig-zag (LZ) helices were obtained following stereochemical guideline. They are referred to as LZ1 and LZ2 helices. LZ1 helices have conformations similar to those found in the single crystals of d(C-G)3 and d(C-G)25,6. Z-character is more prominent in LZ2 than in LZ1 helix. The conformations of a stable link between RU and LZ helical fragments are given. The link involves inverted stacking arrangement of the bases: a characteristic feature of all RL models proposed by us

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A-DNA pattern, obtained using a flat plat camera, was indexed by Fuller Image on the basis of a c-face centred monoclinic cell with A = 22.24 Å, B = 40.62 Å, C = 28.15 Å and β = 97.0°. A precession photograph of A-DNA which gives an undistorted picture of the lattice, showed that the unit cell parameters as given by Fuller Image were not quite correct. The precession photograph showed a strong meridional reflection (R = 0.00 Å−1) on the 11th layer line. But the occurrence of the meridional reflection on the 11th layer line could not be explained on the basis of the cell parameters given by Fuller Image ; using those cell parameters the reflection which comes closest to the meridian on 11th layer line is at R = 0.025 Å−1. However, a simple interchange of a and b values accounted for the meridional reflection on 11th layer line. The corrected cell parameter refined against 28 strong spots are A = 40.75 Å, B = 22.07 Å, C = 28.16 Å and β = 97.5°. In the new unit cell of A-DNA, the packing arrangement of the two molecules is different from that in the old one. Nonetheless, our earlier contention is again reaffirmed that both right and left-handed A-DNA are stereochemically allowed and consistent with the observed fibre pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

5-Fluoro-2'-deoxyuricine is incorporated into DNA of mouse breast tumour Image . The incorporation is inhibited by thymidine. Part of the fluorodeoxyuridine is cleaved to fluorouracil and is incorporated into RNA. This incorporation is enhanced by thymidine. The result suggests that the major mechanism of action of the fluorouracil is due to its incorporation into RNA. FUra, 5-Fluorouracil; FdUR, 5-Fluoro-2'-deoxyuridine; FdUMP, 5-Fluoro-2'-deoxyuridine-5'-monophosphate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A positive cis-acting DNA element in the near 5'-upstream region of the CYP2B1/B2 genes in rat liver was found to play an important role in the transcription of these genes. An oligonucleotide covering -69 to -98 nt mimicked the gel mobility shift pattern given by the fragment -179 to +29 nt, which was earlier found adequate to confer the regulatory features of this gene. Two major complexes were seen, of which the slower and faster moving complexes became intense under uninduced and Phenobarbitone-induced conditions respectively. Minigene cloned DNA plasmid covering -179 to +181 nt in pUC 19 and Bal 31 mutants derived from this parent were transcribed in whole nuclei and cell free transcription extracts and mutants containing only upto -75 nt of the upstream were poorly transcribed. Transcription extracts from phenobarbitone-injected rat liver nuclei were significantly more active than extracts from uninduced rats in transcribing the minigene constructs. Addition of the oligonucleotide (-69 to -98nt) specifically inhibited the transcription of the minigene construct (-179 to +181 nt) in the cell free transcription system. It is therefore, concluded that the region -69 to -98 nt acts as a positive cis-acting element in the transcription of the CYP2B1/B2 genes and in mediating the inductive effects of phenobarbitone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study of the evolution of species or organisms is essential for various biological applications. Evolution is typically studied at the molecular level by analyzing the mutations of DNA sequences of organisms. Techniques have been developed for building phylogenetic or evolutionary trees for a set of sequences. Though phylogenetic trees capture the overall evolutionary relationships among the sequences, they do not reveal fine-level details of the evolution. In this work, we attempt to resolve various fine-level sequence transformation details associated with a phylogenetic tree using cellular automata. In particular, our work tries to determine the cellular automata rules for neighbor-dependent mutations of segments of DNA sequences. We also determine the number of time steps needed for evolution of a progeny from an ancestor and the unknown segments of the intermediate sequences in the phylogenetic tree. Due to the existence of vast number of cellular automata rules, we have developed a grid system that performs parallel guided explorations of the rules on grid resources. We demonstrate our techniques by conducting experiments on a grid comprising machines in three countries and obtaining potentially useful statistics regarding evolutions in three HIV sequences. In particular, our work is able to verify the phenomenon of neighbor-dependent mutations and find that certain combinations of neighbor-dependent mutations, defined by a cellular automata rule, occur with greater than 90% probability. We also find the average number of time steps for mutations for some branches of phylogenetic tree over a large number of possible transformations with standard deviations less than 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uracil DNA glycosylase (Ung)initiates the uracil excision repair pathway. We have earlier characterized the Y66W and Y66H mutants of Ung and shown that they are compromised by similar to 7- and similar to 170-fold, respectively in their uracil excision activities. In this study, fluorescence anisotropy measurements show that compared with the wild-type, the Y66W protein is moderately compromised and attenuated in binding to AP-DNA. Allelic exchange of ung in Escherichia coli with ung::kan, ungY66H:amp or ungY66W:amp alleles showed similar to 5-, similar to 3.0- and similar to 2.0-fold, respectively increase in mutation frequencies. Analysis of mutations in the rifampicin resistance determining region of rpoB revealed that the Y66W allele resulted in an increase in A to G (or T to C) mutations. However, the increase in A to G mutations was mitigated upon expression of wild-type Ung from a plasmid borne gene. Biochemical and computational analyses showed that the Y66W mutant maintains strict specificity for uracil excision from DNA. Interestingly, a strain deficient in AP-endonucleases also showed an increase in A to G mutations. We discuss these findings in the context of a proposal that the residency of DNA glycosylase(s) onto the AP-sites they generate shields them until recruitment of AP-endonucleases for further repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymorphic forms of the DNA duplex with long stretches of structural monotony are known. Several alternating purine-pyrimidine sequences have been shown to adopt left-handed Z-conformation. We report a DNA sequence d(CGCGCGATCGAT)n exhibiting alternating right-handed B and left-handed Z helical conformation after every half a turn. Further, this unusual conformation with change in handedness after every six base pairs was induced at physiological superhelical density.