17 resultados para DMT
em Indian Institute of Science - Bangalore - Índia
Resumo:
We consider single-source, single-sink (ss-ss) multi-hop relay networks, with slow-fading Rayleigh links. This two part paper aims at giving explicit protocols and codes to achieve the optimal diversity-multiplexing tradeoff (DMT) of two classes of multi-hop networks: K-parallel-path (KPP) networks and Layered networks. While single-antenna KPP networks were the focus of the first part, we consider layered and multi-antenna networks in this second part. We prove that a linear DMT between the maximum diversity d(max). and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks under the half-duplex constraint. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4. For the multiple-antenna case, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks. Along the way, we compute the DMT of parallel MIMO channels in terms of the DMT of the component channel. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable using an amplify-and-forward (AF) protocol. Explicit short-block-length codes are provided for all the proposed protocols. Two key implications of the results in the two-part paper are that the half-duplex constraint does not necessarily entail rate loss by a factor of two as previously believed and that simple AN protocols are often sufficient to attain the best possible DMT.
Resumo:
We consider single-source, single-sink multi-hop relay networks, with slow-fading Rayleigh fading links and single-antenna relay nodes operating under the half-duplex constraint. While two hop relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this two-part paper, we identify two families of networks that are multi-hop generalizations of the two hop network: K-Parallel-Path (KPP) networks and Layered networks. In the first part, we initially consider KPP networks, which can be viewed as the union of K node-disjoint parallel paths, each of length > 1. The results are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the optimal DMT of KPP(D) networks with K >= 4, and KPP(I) networks with K >= 3. Along the way, we derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. As a special case, the DMT of two-hop relay network without direct link is obtained. Two key implications of the results in the two-part paper are that the half-duplex constraint does not necessarily entail rate loss by a factor of two, as previously believed and that, simple AF protocols are often sufficient to attain the best possible DMT.
Resumo:
Some basic results that help in determining the Diversity-Multiplexing Tradeoff (DMT) of cooperative multihop networks are first identified. As examples, the maximum achievable diversity gain is shown to equal the min-cut between source and sink, whereas the maximal multiplexing gain is shown to equal the minimum rank of the matrix characterizing the MIMO channel appearing across a cut in the network. Two multi-hop generalizations of the two-hop network are then considered, namely layered networks as well as a class of networks introduced here and termed as K-parallel-path (KPP) networks. The DMT of KPP networks is characterized for K > 3. It is shown that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for fully-connected, layered networks. Explicit coding schemes achieving the DMT that make use of cyclic-division-algebra-based distributed space-time codes underlie the above results. Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple, amplify-and-forward protocols are often sufficient to attain the optimal DMT.
Resumo:
The e�cient operation of single-source, single-sink wireless network is considered with the diversity-multiplexing gain tradeo� (DMT) as the measure of performance. Whereas in the case of a point-to-point MIMO channel the DMT is determined by the fading statistics, in the case of a network, the DMT is additionally, a function of the time schedule according to which the network is operated, as well as the protocol that dictates the mode of operation of the intermediate relays.In general, it is only possible at present, to provide upper bounds on the DMT of the network in terms of the DMT of the MIMO channel appearing across cuts in the network. This paper presents a tutorial overview on the DMT of half-duplex multi-hop wireless networks that also attempts to identify where possible, codes that achieve the DMT.For example, it is shown how one can construct codes that achieve the DMT of a network under a given schedule and either an amplify-and-forward or decode-and-forward protocol. Also contained in the paper,are discussions on the DMT of the multiple-access channel as well as the impact of feedback on the DMT of a MIMO channel.
Resumo:
Diversity embedded space time codes are high rate codes that are designed such that they have a high diversity code embedded within them. A recent work by Diggavi and Tse characterizes the performance limits that can be achieved by diversity embedded space-time codes in terms of the achievable Diversity Multiplexing Tradeoff (DMT). In particular, they have shown that the trade off is successively refinable for rayleigh fading channels with one degree of freedom using superposition coding and Successive Interference Cancellation (SIC). However, for Multiple-Input Multiple-Output (MIMO) channels, the questions of successive refinability remains open. We consider MIMO Channels under superposition coding and SIC. We derive an upper bound on the successive refinement characteristics of the DMT. We then construct explicit space time codes that achieve the derived upper bound. These codes, constructed from cyclic division algebras, have minimal delay. Our results establish that when the channel has more than one degree of freedom, the DMT is not successive refinable using superposition coding and SIC. The channels considered in this work can have arbitrary fading statistics.
Resumo:
In this paper, the diversity-multiplexing gain tradeoff (DMT) of single-source, single-sink (ss-ss), multihop relay networks having slow-fading links is studied. In particular, the two end-points of the DMT of ss-ss full-duplex networks are determined, by showing that the maximum achievable diversity gain is equal to the min-cut and that the maximum multiplexing gain is equal to the min-cut rank, the latter by using an operational connection to a deterministic network. Also included in the paper, are several results that aid in the computation of the DMT of networks operating under amplify-and-forward (AF) protocols. In particular, it is shown that the colored noise encountered in amplify-and-forward protocols can be treated as white for the purpose of DMT computation, lower bounds on the DMT of lower-triangular channel matrices are derived and the DMT of parallel MIMO channels is computed. All protocols appearing in the paper are explicit and rely only upon AF relaying. Half-duplex networks and explicit coding schemes are studied in a companion paper.
Resumo:
For an n(t) transmit, nr receive antenna (n(t) x n(r)) MIMO system with quasi- static Rayleigh fading, it was shown by Elia et al. that space-time block code-schemes (STBC-schemes) which have the non-vanishing determinant (NVD) property and are based on minimal-delay STBCs (STBC block length equals n(t)) with a symbol rate of n(t) complex symbols per channel use (rate-n(t) STBC) are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r). Further, explicit linear STBC-schemes (LSTBC-schemes) with the NVD property were also constructed. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of the Alamouti code-scheme for the 2 x 1 system and rate-1, diagonal STBC-schemes with NVD for an nt x 1 system, no known minimal-delay, rate-n(r) LSTBC-scheme has been shown to be DMT-optimal. In this paper, we first obtain an enhanced sufficient criterion for an STBC-scheme to be DMT optimal and using this result, we show that for certain asymmetric MIMO systems, many well-known LSTBC-schemes which have low ML-decoding complexity are DMT-optimal, a fact that was unknown hitherto.
Resumo:
In this paper, we study the diversity-multiplexing-gain tradeoff (DMT) of wireless relay networks under the half-duplex constraint. It is often unclear what penalty if any, is imposed by the half-duplex constraint on the DMT of such networks. We study two classes of networks; the first class, called KPP(I) networks, is the class of networks with the relays organized in K parallel paths between the source and the destination. While we assume that there is no direct source-destination path, the K relaying paths can interfere with each other. The second class, termed as layered networks, is comprised of relays organized in layers, where links exist only between adjacent layers. We present a communication scheme based on static schedules and amplify-and-forward relaying for these networks. We also show that for KPP(I) networks with K >= 3, the proposed schemes can achieve full-duplex DMT performance, thus demonstrating that there is no performance hit on the DMT due to the half-duplex constraint. We also show that, for layered networks, a linear DMT of d(max)(1 - r)(+) between the maximum diversity d(max) and the maximum MG, r(max) = 1 is achievable. We adapt existing DMT optimal coding schemes to these networks, thus specifying the end-to-end communication strategy explicitly.
Resumo:
For any n(t) transmit, n(r) receive antenna (n(t) x n(r)) multiple-input multiple-output (MIMO) system in a quasi-static Rayleigh fading environment, it was shown by Elia et al. that linear space-time block code schemes (LSTBC schemes) that have the nonvanishing determinant (NVD) property are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r) if they have a code rate of n(t) complex dimensions per channel use. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of a few LSTBC schemes, it is unknown whether general LSTBC schemes with NVD and a code rate of n(r) complex dimensions per channel use are DMT optimal. In this paper, an enhanced sufficient criterion for any STBC scheme to be DMT optimal is obtained, and using this criterion, it is established that any LSTBC scheme with NVD and a code rate of min {n(t), n(r)} complex dimensions per channel use is DMT optimal. This result settles the DMT optimality of several well-known, low-ML-decoding-complexity LSTBC schemes for certain asymmetric MIMO systems.
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), nonorthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time (ST) code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the orthogonal and the nonorthogonal amplify-and-forward (NAF) protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Moreover our code construction for the OAF protocol incurs less delay. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. The variable-NSDF protocol is shown to improve on the DMT of the best previously known static protocol when the number of relays is greater than two. Also included is a DMT optimal code construction for the NAF protocol.
Resumo:
The assumption of nodes in a cooperative communication relay network operating in synchronous fashion is often unrealistic. In the present paper we consider two different models of asynchronous operation in cooperative-diversity networks experiencing slow fading and examine the corresponding diversity-multiplexing tradeoffs (DMT). For both models, we propose protocols and distributed space-time codes that asymptotically achieve the transmit diversity bound for all multiplexing gains and for number of relays N >= 2.
Resumo:
This paper investigates the diversity-multiplexing gain tradeoff (DMT) of a time-division duplex (TDD) single-input multiple-output (SIMO) system with perfect channel state information (CSI) at the receiver (CSIR) and partial CSI at the transmitter (CSIT). The partial CSIT is acquired through a training sequence from the receiver to the transmitter. The training sequence is chosen in an intelligent manner based on the CSIR, to reduce the training length by a factor of r, the number of receive antennas. We show that, for the proposed training scheme and a given channel coherence time, the diversity order increases linearly with r for nonzero multiplexing gain. This is a significant improvement over conventional orthogonal training schemes.
Resumo:
We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP)networks and layered networks.KPP networks, can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4.For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks.For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable.Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. We also give alternative and often simpler proofs of several existing results and show that codes achieving full diversity on a MIMO Rayleigh fading channel achieve full diversity on arbitrary fading channels. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes.Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), non-orthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the OAF and NAF protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. In the two-relay case, the variable-NSDF protocol is shown to improve on the DMT of the best previously-known static protocol for higher values of multiplexing gain. Our results also establish that the fixed-NSDF protocol has a better DMT than the NAF protocol for any number of relays.