14 resultados para DIFFERENT ADHESIVE SYSTEMS
em Indian Institute of Science - Bangalore - Índia
Resumo:
MNDO geometry optimizations were carried out on a series of symmetrically and unsymmetrically coupled strained ring hydrocarbons, R1-R1 and R1–R2 (R1=methyl, cyclopropyl, 1-bicyclo[1.1.0]butyl, 1-bicyclo[1.1.1]pentyl, prismyl, cubyl, 6-tricyclo [3.1.1.03,6]heptyl, and tetrahedryl groups; R2=methyl and cyclopropyl). The remarkable contraction of the C---C bond connecting the strained rings found experimentally in a few cases was reproduced correctly by the calculations. A linear correlation was found between the bond length shortening and the bond angle widening at the corresponding carbon atoms for all the structures considered. The reduction in C---C bond lengths due to various ring systems is additive. The additivity indicates that inter-ring interactions which effect the central bond length are absent and confirms the common electronic origin of bond contraction in these systems, viz. enhanced s-character in the exocyclic bonds of strained rings.
Resumo:
Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the electrical discharge resistant characteristics of epoxy nanocomposite systems with SiO2 and Al2O3 nano-fillers. A comparative study is performed between unfilled epoxy systems, nanoparticle filled epoxy systems and a bimodal system containing both micrometer and nanometer sized fillers of the same material. The samples are exposed to surface discharges and the levels of surface degradation are analyzed through SEM and surface roughness measurements. Significant variations were observed in the electrical discharge resistant characteristics between the different composite systems and it is seen that the introduction of nano-fillers to epoxy is advantageous in improving the electrical discharge resistance of epoxy.
Resumo:
A mono-oxygenase catalysing the conversion of 2-ethyl-4-thioisonicotinamide (ethionamide) into its sulphoxide was purified from guinea-pig liver homogenates. The enzyme required stoicheiometric amounts of oxygen and NADPH for the sulphoxidation reaction. The purified protein is homogeneous by electrophoretic, antigenic and chromatographic criteria. The enzyme has mol.wt. 85000 and it contains 1g-atom of iron and 1mol of FAD per mol, but not cytochrome P-450. The enzyme shows maximal activity at pH7.4 in a number of different buffer systems and the Km values calculated for the substrate and NADPH are 6.5×10-5m and 2.8×10-5m respectively. The activation energy of the reaction was calculated to be 36kJ/mol. Under optimal conditions, the molecular activity of the enzyme (mol of substrate oxidized/min per mol of enzyme) is calculated to be 2.1. The oxygenase belongs to the class of general drug-metabolizing enzymes and it may act on different compounds which can undergo sulphoxidation. The mechanism of sulphoxidation was shown to be mediated by superoxide anions.
Resumo:
Aqueous solutions of sodium chloride were solidified under the influence of magnetic and electrical fields using two different freezing systems. In the droplet system, small droplets of the solution are introduced in an organic liquid column at −20°C which acts as the heat sink. In the unidirectional freezing system the solutions are poured into a tygon tube mounted on a copper chill, maintained at −70°C, from which the freezing initiates. Application of magnetic fields caused an increase in the spacing and promoted side branching of primary ice dendrites in the droplet freezing system, but had no measurable effect on the dendrites formed in the unidirectional freezing system. The range of electric fields applied in this investigation had no measurable effect on the dendritic structure. Possible interactions between external magnetic and electrical fields have been reviewed and it is suggested that the selective effect of magnetic fields on dendrite spacings in a droplet system could be due to a change in the nucleation behaviour of the solution in the presence of a magnetic field.
Resumo:
The fungicide Bavistin was assessed for mutagenic potential by various assays. Bavistin was found to be unable to induce gene mutation in Salmonella typhimurium, but it was able to induce transfection inhibition in Mycobacterium smegmatis. Bavistin was able to induce immediate genotoxic effects in plants but these were not carried through in development as in the long term no genotoxic effects were observed by the progeny test. Bavistin did induce micronuclei formation and did cause an increase in the ratio of normochromatic to polychromatic erythrocytes in mice. It was able to induce a very low frequency of sister-chromatid exchange in human lymphocytes and in addition, it was observed that the chemical affected the mitotic index but did not affect the cell cycle duration. Present studies indicate that the pesticide shows a positive response in 4 out of 5 different test systems (Table 8) and most of the observations support that Bavistin is genotoxic.
Resumo:
The effect of N-terminal diproline segments in nucleating helical folding in designed peptides has been studied in two model sequences Piv-Pro-Pro-Aib-Leu-Aib-Phe-OMe (1) and Boc-Aib-Pro-Pro-Aib-Val-Ala-Phe-OMe (2). The structure of 1 in crystals, determined by X-ray diffraction, reveals a helical (RR) conformation for the segment residues 2 to 5, stabilized by one 4 -> 1 hydrogen bond and two 5 -> 1 interactions. The N-terminus residue, Pro(1) adopts a polyproline II (P-II) conformation. NMR studies in three different solvent systems support a conformation similar to that observed in crystals. In the apolar solvent CDCl3, NOE data favor the population of both completely helical and partially unfolded structures. In the former, the Pro-Pro segment adopts an alpha(R)-alpha(R) conformation, whereas in the latter, a P-II-alpha(R) structure is established. The conformational equilibrium shifts in favor of the P-II-alpha(R) structure in solvents like methanol and DMSO. A significant population of the Pro(1)- Pro(2) cis conformer is also observed. The NMR results are consistent with the population of at least three conformational states about Pro- Pro segment: trans alpha(R)-alpha(R), trans P-II-alpha(R) and cis P-II-alpha(R). Of these, the two trans conformers are in rapid dynamic exchange on the NMR time scale, whereas the interconversion between cis and trans form is slow. Similar results are obtained with peptide 2. Analysis of 462 diproline segments in protein crystal structures reveals 25 examples of the alpha(R)-alpha(R) conformation followed by a helix. Modeling and energy minimization studies suggest that both P-II-alpha(R) and alpha(R)-alpha(R) conformations have very similar energies in the model hexapeptide 1
Resumo:
The complex permittivity characteristics of epoxy nanocomposite systems were examined and an attempt has been made to understand the underlying physics governing some of the unique macroscopic dielectric behaviors. The experimental investigations were performed using two different nanocomposite systems with low filler concentrations over the frequency range of 10(-2)-400 Hz, but for some cases, the data has been reported upto 10(6) Hz for a better understanding of the behaviors. Results demonstrate that nanocomposites do possess unique permittivity behaviors as compared to those already known for unfilled polymer and microcomposite systems. The nanocomposite real permittivity and tan delta values are found to be lower than that of unfilled epoxy. In addition, results show that interfacial polarization and charge carrier mobilities are suppressed in epoxy nanocomposite systems. The complex permittivity spectra coupled with the ac conductivity characteristics with respect to frequency was found to be sufficient to identify several of the nanocomposite characteristics like the reduction in permittivity values, reduction in the interfacial polarization mechanisms and the electrical conduction behaviors. Analysis of the results are also performed using electric modulus formalisms and it has been seen that the nanocomposite dielectric behaviors at low frequencies can also be explained clearly using this formalism.
Resumo:
A single step solid phase radioimmunoassay (SS-SPRIA) has been developed for human chorionic,gonadotropin (hCG) using monoclonal antibodies (MAb) from culture media adsorbed immunochemically on plastic tubes. The assays have been found to be very simple in terms of operation and do not demand purification of MAbs. Several MAbs which do not show any displacement in liquid phase RIA and ELISA provide a satisfactory SS-SPRIA. Our investigations revealed that the assumption regarding the stability of the primary Mab-Ag complex during incubation and washing steps in ELISAs is not strictly valid for dissociable MAbs. A comparison of different assay systems suggests that the single step SPRIA offers additional advantages over conventionally used multistep ELISA procedures and provides a quantitative probe for the analysis of epitope-paratope interactions.
Resumo:
The experimental realization of various spin ladder systems has prompted their detailed theoretical investigations. Hen we study the evolution of ground-state magnetization with an external magnetic field for two different antiferromagnetic systems: a three-legged spin-1/2 ladder, and a two-legged spin-1/2 ladder with an additional diagonal interaction. The finite system density-matrix renormalization-group method is employed for numerical studies of the three-chain system, and an effective low-energy Hamiltonian is used in the limit of strong interchain coupling to study the two- and three-chain systems. The three-chain system has a magnetization plateau at one-third of the saturation magnetization. The two-chain system has a plateau at zero magnetization due to a gap above the singlet ground state. It also has a plateau at half of the saturation magnetization for a certain range of values of the couplings. We study the regions of transitions between plateaus numerically and analytically, and find that they are described, at first order in a strong-coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the second-order terms give corrections to the XXZ model, We also study numerically some low-temperature properties of the three-chain system, such as the magnetization, magnetic susceptibility and specific heat. [S0163-1829(99)303001-5].
Resumo:
Long running multi-physics coupled parallel applications have gained prominence in recent years. The high computational requirements and long durations of simulations of these applications necessitate the use of multiple systems of a Grid for execution. In this paper, we have built an adaptive middleware framework for execution of long running multi-physics coupled applications across multiple batch systems of a Grid. Our framework, apart from coordinating the executions of the component jobs of an application on different batch systems, also automatically resubmits the jobs multiple times to the batch queues to continue and sustain long running executions. As the set of active batch systems available for execution changes, our framework performs migration and rescheduling of components using a robust rescheduling decision algorithm. We have used our framework for improving the application throughput of a foremost long running multi-component application for climate modeling, the Community Climate System Model (CCSM). Our real multi-site experiments with CCSM indicate that Grid executions can lead to improved application throughput for climate models.
Resumo:
Tribological interaction often generates new structures and materials which form the interface between the sliding pair. The new material designated tribofilm here may be protective or tribologically deleterious. The tribofilm plays a major role in determining the friction and wear of the interaction. Here, we give three examples: mechanically mixed, chemically generated and thermally activated, of tribofilms formed in three different tribological systems and speculate on the mechanism of their formation.
Resumo:
The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.
Resumo:
One new homoleptic Bi(dtc)(3)] (1) (dtc = 4-hydroxypiperdine dithiocarbamate) has been synthesized and characterized by microanalysis, IR, UV-Vis, H-1 and C-13 spectroscopy and X-ray crystallography. The photoluminescence spectrum for the compound in DMSO solution was recorded. The crystal structure of 1 displayed distorted octahedral geometry around the Bi(III) center bonded through sulfur atoms of the dithiocarbamate ligands. TGA indicates that the compound decomposes to a Bi and Bi-S phase system. The Bi and Bi-S obtained from decomposition of the compound have been characterized by pXRD, EDAX and SEM. Solvothermal decomposition of 1 in the absence and presence of two different capping agents yielded three morphologically different Bi2S3 systems which were deployed as counter-electrode in dye-sensitized solar cells (DSSCs). (C) 2015 Elsevier B.V. All rights reserved.