202 resultados para D-ORBITALS
em Indian Institute of Science - Bangalore - Índia
Resumo:
In order to investigate the factors determining the relative stabilities of layered perovskite and pyrochlore structures of transition metal oxides containing trivalent bismuth, several ternary and quaternary oxides have been investigated. While d0 cations stabilize the layered perovskite structure, cations containing partially-filled d orbitals (which suppress ferroelectric distortion of MO6 octahedra) seem to favor pyrochlore-related structures. Thus, the vanadium analogue of the layered perovskite Bi4Ti3O12 cannot be prepared; instead the composition consists of a mixture of pyrochlore-type Bi1.33V2O6, Bi2O3, and Bi metal. The distortion of Bi1.33V2O6 to orthorhombic symmetry is probably due to an ordering of anion vacancies in the pyrochlore structure. None of the other pyrochlores investigated, Bi2NbCrO7, Bi2NbFeO7, TlBiM2O7 (M = Nb, Ta), shows evidence for cation ordering in the X-Ray diffraction patterns, as indeed established by structure refinement of TlBiNb2O7.
Resumo:
We report interesting anomalies in the temperature dependent Raman spectra of FeSe0.82 measured from 3 K to 300 K in the spectral range from 60 to 1800 cm(-1) and determine their origin using complementary first-principles density functional calculations. A phonon mode near 100 cm-1 exhibits a sharp increase by similar to 5% in the frequency below a temperature T-s (similar to 100 K) attributed to strong spin-phonon coupling and onset of short-range antiferromagnetic order. In addition, two high frequency modes are observed at 1350 cm-1 and 1600 cm-1, attributed to electronic Raman scattering from (x(2)-y(2)) to xz/yz d-orbitals of Fe. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H-2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature. (C) 2013 AIP Publishing LLC.
Resumo:
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)(2)As-2 in a wide spectral range of 120-5200 cm(-1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at T-sm similar to 160 K. The mode frequencies of two first-order Raman modes B-1g and E-g, both involving the displacement of Fe atoms, show a sharp increase below T-sm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below T-sm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm(-1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be similar to 25 meV, which increases as temperature decreases below T-sm. A broad Raman band observed at similar to 3200 cm(-1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.
Resumo:
Asymmetric tri-bridged diruthenium(III) complexes, [Ru2O(O(2)CR)(3)(en) (PPh(3))(2)](ClO4) (R = C6H4-p-X: X = OMe (1a), Me (1b); en=1,2-diaminoethane), were prepared and structurally characterized. Complex 1a 3CHCl(3), crystallizes in the triclinic space group P (1) over bar with a = 14.029(5), b = 14.205(5), c = 20.610(6) Angstrom, alpha= 107.26(3), beta = 101.84(3), gamma= 97.57(3)degrees, V= 3756(2) Angstrom(3) and Z = 2. The complex has an {Ru-2(mu-O)(mu-O(2)CR)(2)(2+)} core and exhibits [O4PRu(mu-O)RuPO2N2](+) coordination environments for the metal centers. The novel structural feature is the asymmetric arrangement of ligands at the terminal sites of the core which shows an Ru... Ru separation of 3.226(3) Angstrom and an Ru-O-Ru angle of 119.2(5)degrees. An intense visible band observed near 570 nm is assigned to a charge transfer transition involving the d pi-Ru(III) and p pi-mu-O Orbitals. Cyclic voltammetry of the complexes displays a reversible Ru-2(III,III) reversible arrow Ru-2(III,IV) couple near 0.8 V (versus SCE) in MeCN-0.1 M TBAP.
Resumo:
Complexes [Ru2O(O2CR)(2)(1-MeIm)(6)](ClO4)(2) (la-c), [Ru2O(O2CR)(2)(ImH)(6)](ClO4)(2) (2a,b), and [Ru2O(O2CR)(2)(4-MeImH)(6)](ClO4)(2) (3a,b) with a (mu-oxo)bis(mu-carboxylato)diruthenium(III) core have been prepared by reacting Ru2Cl(O2CR)(4) with the corresponding imidazole base, viz. 1-methylimidazole (1-MeIm), imidazole (ImH), and 4-methylimidazole (4-MeImH) in methanol, followed by treatment with NaClO4 in water (R: Me, a; C6H4-p-OMe, b; C6H4-p-Me, c). Diruthenium(III,IV) complexes [Ru2O(O2CR)(2)(1-MeIm)(6)](ClO4)(3) (R: Me, 4a; C6H4-p-OMe, 4b; C6H4-p-Me, 4c) have been prepared by one-electron oxidation of 1 in MeCN with K2S2O8 in water. Complexes la, 2a . 3H(2)O, and 4a . 1.5H(2)O have been structurally characterized. Crystal data for the complexes are as follows: la, orthorhombic, P2(1)2(1)2(1), a = 7.659(3) Angstrom, b = 22.366(3) Angstrom, c = 23.688(2) Angstrom, V = 4058(2) Angstrom(3), Z = 4, R = 0.0475, and R-w = 0.0467 for 2669 reflections with F-o > 2 sigma(F-o); 2a . 3H(2)O, triclinic,
, a = 13.735(3) Angstrom, b = 14.428(4) Angstrom, c = 20.515(8) Angstrom, alpha = 87.13(3)degrees, beta = 87.61(3)degrees, gamma = 63.92(2)degrees, V = 3646(2) Angstrom(3), Z = 4, R = 0.0485 and R-w = 0.0583 for 10 594 reflections with F-o > 6 sigma(F-o); 4a . 1.5H(2)O triclinic,
, a = 11.969(3) Angstrom, b = 12.090(6) Angstrom, c = 17.421(3) Angstrom, alpha = 108.93(2)degrees, beta = 84.42(2)degrees, gamma = 105.97(2)degrees, V = 2292(1) Angstrom(3), Z = 2, R = 0.0567, and R-w = 0.0705 for 6775 reflections with F-o > 6 sigma(F-o). The complexes have a diruthenium unit held by an oxo and two carboxylate ligands, and the imidazole ligands occupy the terminal sites of the core. The Ru-Ru distance and the Ru-O-oxo-Ru angle in la and 2a . 3H(2)O are 3.266(1), 3.272(1) Angstrom and 122.4(4), 120.5(2)degrees, while in 4a . 1.5H(2)O these values are 3.327(1) Angstrom and 133.6(2)degrees. The diruthenium(III) complexes 1-3 are blue in color and they exhibit an intense visible band in the range 560-575 nm. The absorption is charge transfer in nature involving the Ru(III)-d pi and O-oxo-p pi orbitals. The diruthenium(III,IV) complexes are red in color and show an intense band near 500 nm. The diruthenium(III) core readily gets oxidized with K2S2O8 forming quantitatively the diruthenium(III,IV) complex. The visible spectral record of the conversion shows an isosbestic point at 545 nm for 1 and at 535 nm for 2 and 3. Protonation of the oxide bridge by HClO4 in methanol yields the [Ru-2(mu-OH)(mu-O2CR)(2)](3+) core. The hydroxo species shows a visible band al 550 nm. The pK(a) value for la is 2.45. The protonated species are unstable. The 1-MeIm species converts to the diruthenium(III,IV) core, while the imidazole complex converts to [Ru(ImH)(6)](3+) and some uncharacterized products. Complex [Ru(ImH)(6)](ClO4)(3) has been structurally characterized. The diruthenium(III) complexes are essentially diamagnetic and show characteristic H-1 NMR spectra indicating the presence of the dimeric structure in solution. The diruthenium(III,IV) complexes are paramagnetic and display rhombic EPR spectral features. Complexes 1-3 are redox active. Complex 1 shows the one-electron reversible Ru-2(III)/(RuRuIV)-Ru-III, one-electron quasireversible (RuRuIV)-Ru-III/Ru-2(IV), and two-electron quasireversible Ru-2(III)/Ru-2(II) couples near 0.4, 1.5, and -1.0 V vs SCE In MeCN-0.1 M TBAP, respectively, in the cyclic and differential pulse voltammetric studies. Complexes 2 and 3 exhibit only reversible Ru-2(III)/(RuRuIV)-Ru-III and the quasireversible (RuRuIV)-Ru-III/Ru-2(IV) couples near 0.4 and 1.6 V vs SCE, respectively, The observation of a quasireversible one-step two-electron transfer reduction process in 1 is significant considering its relevance to the rapid and reversible Fe-2(III)/Fe-2(II) redox process known for the tribridged diiron core in the oxy and deoxy forms of hemerythrin.
Resumo:
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [P-32] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by Western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [P-32] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC alpha and epsilon, the major isotypes of PKC in BPAECs, by TPA (100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [P-32] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.
Resumo:
Using a multivalley effective mass theory, we obtain the binding energy of a D- ion in Si and Ge taking into account the spatial variation of the host dielectric function. We find that on comparison with experimental results the effect of spatial dispersion is important in the estimation of binding energy for the D- formed by As in Si and Ge. The effect is less significant for the case of D- formed by P and Sb donors.
Resumo:
The reaction of W(CO)(6) with 1-alkyl-2-(naphthyl-alpha-azo)imidazole (alpha-NaiR) has synthesized [W(CO)(5)(alpha-NaiR-N)] (alpha-NaiR-N refers to the monodentate imidazole-N donor ligand) at room temperature. The structure of[W(CO)(5)(alpha-NaiMe-N)] shows a monodentate imidazole-N coordination of 1-methyl-2-(naphthyl-alpha-azo)imidazole (alpha-NaiMe). The complexes are characterized by elemental, mass and other spectroscopic data (IR, UV-Vis, NMR). On refluxing in THF at 323 K, [W(CO)(5)(alpha-NaiR-N)] undergoes decarbonylation to give [W(CO)(4)(alpha-NaiR-N,N')] (alpha-NaiR-N,N' refers to the imidazole-N(N), azo-N(N') bidentate chelator). Cyclic voltammetry shows metal oxidation (W-0/W-1) and ligand reductions (azo/azo(-), azo(-)/azo(=)). The redox and electronic properties are explained by theoretical calculations using an optimized geometry. DFT computation of [W(CO)(5)(alpha-NaiMe-N)] suggests that the major contribution to the HOMO/HOMO - 1 come from W cl-orbitals and the orbitals of CO. The LUMOs are occupied by alpha-NaiMe functions. The back bonding interaction thus originates from the W(CO)(n) moiety to the LUMO of alpha-NaiR. A TD-DFT calculation has ascribed that HOMO/HOMO - 1 -> LUMO is a mixture of metal-to-ligand and ligand-to-ligand charge transfer underlying the CO -> azoimine contribution. The complexes show emission spectra at room temperature. [W(CO)(4)(alpha-NaiR-N,N')] shows a higher fluorescence quantum yield (phi = 0.05-0.07) than [W(CO)(5)(alpha-NaiR-N)] (phi = 0.01-0.02). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The rectangular dielectric waveguide is the most commonly used structure in integrated optics, especially in semi-conductor diode lasers. Demands for new applications such as high-speed data backplanes in integrated electronics, waveguide filters, optical multiplexers and optical switches are driving technology toward better materials and processing techniques for planar waveguide structures. The infinite slab and circular waveguides that we know are not practical for use on a substrate because the slab waveguide has no lateral confinement and the circular fiber is not compatible with the planar processing technology being used to make planar structures. The rectangular waveguide is the natural structure. In this review, we have discussed several analytical methods for analyzing the mode structure of rectangular structures, beginning with a wave analysis based on the pioneering work of Marcatili. We study three basic techniques with examples to compare their performance levels. These are the analytical approach developed by Marcatili, the perturbation techniques, which improve on the analytical solutions and the effective index method with examples.
Resumo:
A hydrothermal reaction of Mn(OAc)2·4H2O, trimesic acid, imidazole, KOH and water at 75 °C for 24 h gave rise to a 2-D compound, [HImd][Mn(BTC)(H2O)] (Imd = imidazole; BTC = trimesate), with protonated imidazole molecules occupying the inter-lamellar space, and the structure resembles the classic inorganic compound, the sodium intercalated TiS2 (Na2TiS2).
Resumo:
Spectroscopic study on the interactions of trace elements Co, Mn, Mg and Al with d(GCGTACGC) indicated the following: Al and Mg did not alter T-m values. Mn enhanced T-m at lower concentration and decreased it at higher concentrations. Interestingly Co at higher concentration elevated the T-m. These studies also showed lower concentrations of Mn displaced EtBr, whereas Al could displace it at higher ionic strength. Mg and Co displaced EtBr fluorescence at moderate concentrations. The binding constant values and CD spectra clearly indicated strong binding of these elements to DNA.
Resumo:
Na+.C6HI209 P-, Mr=282.1, monoclinic, e2~, a=5-762(1), b=7.163(2), c=12.313(1)A, fl= 99.97 (1) °, U= 500.5 A 3, Z= 2, D m = 1.86, D x = 1.87 Mg m -s, Cu Ka, 2 = 1.5418 A, /a = 3-3 mm -1, F(000) = 292, T= 300 K, final R for 922 observed reflections is 0-042. The phosphate ester bond, P-O(6), is 1.575 (5)A, slightly shorter than the P~O bond in monopotassium phosphoenolpyruvate [1.612 (6) A] [Hosur & Viswamitra (1981). Acta Cryst. B37, 839-843]. The pyranose sugar ring takes a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-trans. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5) = 1.435 (8) and C(1)-O(5) = 1.436 (9) A. The sodium ion has seven near neighbours within a distance of 2.9 A. The crystal structure is stabilized by hydrogen bonds between the O atoms of symmetryrelated molecules.
Resumo:
An A-DNA type double helical conformation was observed in the single crystal X-ray structure of the octamer d(G-G-T-A-T-A-C-C), 1, and its 5-bromouracil-containing analogue, 2. The structure of the isomorphous crystals (space group P61) was solved by a search technique based on packing criteria and R-factor calculations, with use of only low order data. At the present stage of refinement the R factors are 31 % for 1 and 28 % for 2 at a resolution of 2.25 A (0.225 nm). The molecules interact through their minor grooves by hydrogen bonding and base to sugar van der Waals contacts. The stable A conformation observed in the crystal may have some structural relevance to promoter regions where the T-A-T-A sequence is frequently found.
Resumo:
The binding of Ricinus communis (castor-bean) agglutinin 1 to saccharides was studied by equilibrium dialysis and fluorescence polarization by using the fluorescently labelled sugar 4-methylumbelliferyl beta-D-galactopyranoside. No appreciable change in ligand fluorescence of 4-methylumbelliferyl beta-D-galactopyranoside was considerably polarized on its binding to the lectin. The association constants obtained by Scatchard analysis of equilibrium-dialysis and fluorescence-polarization data do not differ much from each other, and at 25 degrees C, Ka = 2.4 (+/- 0.2) X 10(4)M-1. These values agree reasonably well with that reported in the literature for Ricinus agglutinin 1. The number of binding sites obtained by the different experimental procedures is 1.94 +/- 0.1 per molecule of 120 000 daltons and is equal to the reported value of 2. The consistency in the values of Ka and number of binding sites indicate the absence of additional subsites on Ricinus agglutinin 1 for its specific sugars. In addition, the excellent agreement between the binding parameters obtained by equilibrium dialysis and fluorescence polarization indicate the potential of ligand-fluorescence-polarization measurements in the investigation of lectin-sugar interactions.