256 resultados para Current loop
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new solution for unbalanced and nonlinear loads in terms of power circuit topology and controller structure is proposed in this paper. A three-phase four-wire high-frequency ac-link inverter is adopted to cater to such loads. Use of high-frequency transformer results in compact and light-weight systems. The fourth wire is taken out from the midpoint of the isolation transformer in order to avoid the necessity of an extra leg. This makes the converter suitable for unbalanced loads and eliminates the requirements of bulky capacitor in half-bridge inverter. The closed-loop control is carried out in stationary reference frame using proportional + multiresonant controller (three separate resonant controller for fundamental, fifth and seventh harmonic components). The limitations on improving steady-state response of harmonic resonance controllers is investigated and mitigated using a lead-lag compensator. The proposed voltage controller is used along with an inner current loop to ensure excellent performance of the power converter. Simulation studies and experimental results with 1 kVA prototype under nonlinear and unbalanced loading conditions validate the proposed scheme.
Resumo:
High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.
Resumo:
Closed loop current sensors used in power electronics applications are expected to have high bandwidth and minimal measurement transients. In this paper, a closed loop compensated Hall-effect current sensor is modeled. The model is used to tune the sensor's compensator. Analytical expression of step response is used to evaluate the performance of the PI compensator in the current sensor. This analysis is used to devise a procedure to design parameters of the PI compensator for fast dynamic response and for small dynamic error. A prototype current sensor is built in the laboratory. Simulations using the model are compared with experimental results to validate the model and to study the variation in performance with compensator parameters. The performance of the designed PI compensator for the sensor is compared with a commercial current sensor. The measured bandwidth of the designed current sensor is above 200 kHz, which is comparable to commercial standards. Implementation issues of PI compensator using operational amplifiers are also addressed.
Resumo:
The charge-pump (CP) mismatch current is a dominant source of static phase error and reference spur in the nano-meter CMOS PLL implementations due to its worsened channel length modulation effect. This paper presents a charge-pump (CP) mismatch current reduction technique utilizing an adaptive body bias tuning of CP transistors and a zero CP mismatch current tracking PLL architecture for reference spur suppression. A chip prototype of the proposed circuit was implemented in 0.13 mu m CMOS technology. The frequency synthesizer consumes 8.2 mA current from a 13 V supply voltage and achieves a phase noise of -96.01 dBc/Hz @ 1 MHz offset from a 2.4 GHz RF carrier. The charge-pump measurements using the proposed calibration technique exhibited a mismatch current of less than 0.3 mu A (0.55%) over the VCO control voltage range of 0.3-1.0 V. The closed loop measurements show a minimized static phase error of within +/- 70 ps and a similar or equal to 9 dB reduction in reference spur level across the PLL output frequency range 2.4-2.5 GHz. The presented CP calibration technique compensates for the DC current mismatch and the mismatch due to channel length modulation effect and therefore improves the performance of CP-PLLs in nano-meter CMOS implementations. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.
Resumo:
The principle of operation of a dual current source converter is briefly explained. The combination of two single current source converters (SCSC) to form a ``dual (duplex) current source converter'' (DCSC) is proposed. The DCSC is shown to have the following merits: 1) it retains all the advantages of the SCSC; 2) it reduces the harmonic content of the current waveform considerably; and 3) since the load current is shared equally between two current source converters, ratings of the individual components employed in the circuit are considerably lowered. A DCSC can be an attractive choice for sophisticated large horsepower drives where a good performance of the drive rather than cost is a prime factor. An open-loop control scheme employing the DCSC for an ac motor drive has been successfully implemented in the laboratory. Oscillograms of the improved load current waveforms are shown.
Resumo:
The loop heat pipe (LHP) is a passive two-phase heat transport device that is gaining importance as a part of spacecraft thermal control systems and also in applications such as in avionics cooling and submarines. A major advantage of a loop heat pipe is that the porous wick structure is confuned to the evaporator section, and connection between the evaporator and condenser sections is by smooth tubes, thus minimizing pressure drop. A brief overview of loop heat pipes with respect to basic fundamentals, construction details, operating principles, and typical operating characteristics is presented in this paper. Finally, the paper presents the current developments in modeling of thermohydraulics and design methodologies of LHPs.
Resumo:
High-level loop transformations are a key instrument in mapping computational kernels to effectively exploit the resources in modern processor architectures. Nevertheless, selecting required compositions of loop transformations to achieve this remains a significantly challenging task; current compilers may be off by orders of magnitude in performance compared to hand-optimized programs. To address this fundamental challenge, we first present a convex characterization of all distinct, semantics-preserving, multidimensional affine transformations. We then bring together algebraic, algorithmic, and performance analysis results to design a tractable optimization algorithm over this highly expressive space. Our framework has been implemented and validated experimentally on a representative set of benchmarks running on state-of-the-art multi-core platforms.
Resumo:
Conformational diversity or shapeshifting in cyclic peptide natural products can, in principle, confer a single molecular entity with the property of binding to multiple receptors. Conformational equilibria have been probed in the contryphans, which are peptides derived from Conus venom possessing a 23-membered cyclic disulfide moiety. The natural sequences derived from Conus inscriptus, GCV(D)LYPWC* (In936) and Conus loroisii, GCP(D)WDPWC* (Lo959) differ in the number of proline residues within the macrocyclic ring. Structural characterisation of distinct conformational states arising from cis-trans equilibria about Xxx-Pro bonds is reported. Isomerisation about the C2-P3 bond is observed in the case of Lo959 and about the Y5-P6 bond in In936. Evidence is presented for as many as four distinct species in the case of the synthetic analogue V3P In936. The Tyr-Pro-Trp segment in In936 is characterised by distinct sidechain orientations as a consequence of aromatic/proline interactions as evidenced by specific sidechain-sidechain nuclear Overhauser effects and ring current shifted proton chemical shifts. Molecular dynamics simulations suggest that Tyr5 and Trp7 sidechain conformations are correlated and depend on the geometry of the Xxx-Pro bond. Thermodynamic parameters are derived for the cis trans equilibrium for In936. Studies on synthetic analogues provide insights into the role of sequence effects in modulating isomerisation about Xxx-Pro bonds.
Resumo:
This paper reports instability and oscillations in the stator current under light-load conditions in a practical 100-kW induction motor drive. Dead-time is shown to be a cause for such oscillations. This paper shows experimentally that these oscillations could be mitigated significantly with the help of a simple dead-time compensation scheme.
Resumo:
This paper reports instability and oscillations in the stator current under light-load conditions in a practical 100-kW induction motor drive. Dead-time is shown to be a cause for such oscillations. This paper shows experimentally that these oscillations could be mitigated significantly with the help of a simple dead-time compensation scheme.
Resumo:
Insulated gate bipolar transistors (IGBTs) are used in high-power voltage-source converters rated up to hundreds of kilowatts or even a few megawatts. Knowledge of device switching characteristics is required for reliable design and operation of the converters. Switching characteristics are studied widely at high current levels, and corresponding data are available in datasheets. But the devices in a converter also switch low currents close to the zero crossings of the line currents. Further, the switching behaviour under these conditions could significantly influence the output waveform quality including zero crossover distortion. Hence, the switching characteristics of high-current IGBTs (300-A and 75-A IGBT modules) at low load current magnitudes are investigated experimentally in this paper. The collector current, gate-emitter voltage and collector-emitter voltage are measured at various low values of current (less than 10% of the device rated current). A specially designed in-house constructed coaxial current transformer (CCT) is used for device current measurement without increasing the loop inductance in the power circuit. Experimental results show that the device voltage rise time increases significantly during turn-off transitions at low currents.
Resumo:
This paper demonstrates light-load instability in open-loop induction motor drives on account of inverter dead-time. The dynamic equations of an inverter fed induction motor, incorporating the effect of dead-time, are considered. A procedure to derive the small-signal model of the motor, including the effect of inverter dead-time, is presented. Further, stability analysis is carried out on a 100-kW, 415V, 3-phase induction motor considering no-load. For voltage to frequency (i.e. V/f) ratios between 0.5 and 1 pu, the analysis brings out regions of instability on the V-f plane, in the frequency range between 5Hz and 20Hz. Simulation and experimental results show sub-harmonic oscillations in the motor current in this region, confirming instability as predicted by the analysis.
Resumo:
Wavelength Division Multiplexing (WDM) techniques overfibrelinks helps to exploit the high bandwidth capacity of single mode fibres. A typical WDM link consisting of laser source, multiplexer/demultiplexer, amplifier and detectoris considered for obtaining the open loop gain model of the link. The methodology used here is to obtain individual component models using mathematical and different curve fitting techniques. These individual models are then combined to obtain the WDM link model. The objective is to deduce a single variable model for the WDM link in terms of input current to system. Thus it provides a black box solution for a link. The Root Mean Square Error (RMSE) associated with each of the approximated models is given for comparison. This will help the designer to select the suitable WDM link model during a complex link design.
Resumo:
PWM waveforms with positive voltage transition at the positive zero crossing of the fundamental voltage (type-A) are generally considered for PWM waveform with even number of switching angles per quarter whereas, waveforms with negative voltage transition at the positive zero crossing (type-B) are considered for odd number of switching angles per quarter. Optimal PWM, for minimization of total harmonic distortion of line to line (VWTHD), is generally solved with the aforementioned criteria. This paper establishes that a combination of both types of waveforms gives better performance than any individual type in terms of minimum VWTHD for complete range of modulation index (M). Optimal PWM for minimum VWTHD is solved for PWM waveforms with pulse numbers (P) of 5 and 7. Both type-A and type-B waveforms are found to be better in different ranges of M. The theoretical findings are confirmed through simulation and experimental results on a 3.7 kW squirrel cage induction motor in an open-loop V/f drive. Further, the optimal PWM is analysed from a space vector point of view.