12 resultados para Cotton gins and ginning
em Indian Institute of Science - Bangalore - Índia
Resumo:
Gemini viral assembly and transport of viral DNA into nucleus for replication, ssentially involve DNA-coat protein interactions. The kinetics of interaction of Cotton LeafCtirl Kokhran Virus-Dabawali recombinant coat protein (rCP) with DNA was studied by electrophoretic mobility shift assay (EMSA) and Surface plasmon resonance (SPR). The rCP interacted with ssDNA with a K-A, of 2.6 +/- 0.29 x 10(8) M-1 in a sequence non-specific manner. The CP has a conserved C2H2 type zinc finger motif composed of residues C68, C72, H81 and H85. Mutation of these residues to alanine resulted in reduced binding to DNA probes. The H85A mutant rCP showed the least binding with approximately 756 fold loss in the association rate and a three order magnitude decrease in the binding affinity as compared to rCP. The CP-DNA interactions via the zinc finger motif could play a Crucial role ill Virus assembly and in nuclear transport. (C) 2009 Elsevier Inc.
Resumo:
Investigations were carried out to determine the role of juvenile hormone (JH) and 20-hydroxy ecdysone in the synthesis and uptake of vitellogenins, which were earlier identified, purified and characterised, in Dysdercus koenigii. The concentration(s) of vitellogenin(s) in fat body, haemolymph and that of vitellin(s) in ovary were significantly lower after chemical allatectomy at eclosion. In addition, at 70 h after emergence, chemical allatectomy reduced ovarian vitellin concentration, but vitellogenin levels remained normal in the fat body and haemolymph. The haemolymph vitellogenins were not incorporated into oocytes in such insects. Administration of JH-III at 20 h after allatectomy restored vitellogenin levels in the fat body and haemolymph, but the ovary failed to incorporate the available vitellogenins from haemolymph in such insects. However, when JH-III was administered twice, one at 20 h and then at 70 h after allatectomy, vitellogenin concentrations in fat body and haemolymph and also vitellin concentrations in ovary approached control levels. It is suggested that JH has two separate roles, one in vitellogenin synthesis and the other in uptake. 20-hydroxy ecdysone had no apparent role in either vitellogenin synthesis or uptake in D. koenigii. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
Phenoloxidases are oxidative enzymes, which play an important role in both cell mediated and humoral immunity. Purification and biochemical characterization of prophenoloxidase from cotton bollworm, Helicoverpa armigera (Hubner) were carried out to study its biochemical properties. Prophenoloxidase consists of a single polypeptide chain with a relative molecular weight of 85 kDa as determined by SDSPAGE, MALDITOF MS and LCESI MS. After the final step, the enzyme showed 71.7 fold of purification with a recovery of 49.2%. Purified prophenoloxidase showed high specific activity and homology with phenoloxidase subunit-1 of Bombyx mori and the conserved regions of copper binding (B) site of phenoloxidase. Purified prophenoloxidase has pH optima of 6.8 and has high catalytic efficiency towards the dopamine as a substrate in comparison to catechol and L-Dopa. The PO activity was strongly inhibited by phenylthiourea, thiourea, dithiothreitol and kojic acid.
Resumo:
Positive nitrogenase activities ranging from 0.18 to 0.78 nmol of C2H4 cm−2 h−1 were detected on the leaf surfaces of different varieties of cotton (Gossypium hirsutum L. and G. herbaceum L.) plants. Beijerinckia sp. was observed to be the predominant nitrogen-fixing microorganism in the phyllosphere of these varieties. A higher level of phyllosphere nitrogen-fixing activity was recorded in the variety Varalaxmi despite a low C/N ratio in the leaf leachates. Leaf surfaces of the above variety possessed the largest number of hairy outgrowths (trichomes) which entrapped a majority of microbes. Immersion of plant roots in nutrient medium containing 32Pi led to the accumulation of label in the trichome-borne microorganisms, thereby indicating a possible transfer of nutrients from leaf to microbes via trichomes. Extrapolation of acetylene reduction values suggested that 1.6 to 3.2 kg of N ha−1 might be contributed by diazotrophs in the phyllosphere of the variety Varalaxmi during the entire growth period.
Resumo:
Induced Cotton effects have been observed in the visible region on interaction of bilirubin with chiral mono- and diamines and poly-l-lysine. At alkaline pH distinct CD spectra are observed for bilirubin bound to the α-helical and β-sheet conformation of poly-l-lysine, which differ from that observed for the pigment bound to human serum albumin. The CD pattern observed on binding to N-acetyl-Lys-N1-methylamide in CH2Cl2 and dioxane is different from that observed in the presence of l-Ala-NH-(CH2)6-NH-l-Ala in dioxane. The latter case resembles the spectrum observed in the presence of human serum albumin. Binding to the helical polypeptide melittin and the antiparallel β-sheet peptide, gramicidin S, in aqueous solutions results in opposite signs of the bilirubin CD bands. The quenching of tryptophan fluorescence in melittin, in aqueous solution and enhancement of bilirubin fluorescence in dioxane on binding to gramicidin S have been used to monitor pigment-peptide interactions. The results suggest the utility of bilirubin as a conformational probe.
Resumo:
The fluorescence emission spectrum of soybean dihydrofolate reductase suggests that the emitting tryptophan residues are situated in a hydrophobic microenvironment. The dissociation constants determined from fluorescence and circular dichroism data reveal that the soybean enzyme has a lower affinity for substrates and substrate analogs than that determined for dihydrofolate reductases isolated from other sources. The binding of methotrexate to the soybean enzyme does not affect the binding of NADPH. Similarly, the binding of NADPH has no effect on subsequent methotrexate binding. Polarimetric study indicates that the enzyme has a low (ca. 5%) α-helical content. Addition of dihydrofolate to the soybean enzyme results in the generation of a positive ellipticity band at 298 nm with a molar ellipticity, [θ], of 186,000, whereas the binding of folate induces a negative ellipticity band at 280 nm with [θ] of −181,000. The qualitative and quantitative differences in the circular dichroism of the enzyme-dihydrofolate and enzyme-folate complexes indicate that the mode of binding of these ligands may be different. The formation of an enzyme-NADPH complex is accompanied by a negative Cotton effect at 270 nm. These studies indicate that the binding of substrates or inhibitors causes significant conformational changes in the enzyme and also leads to the formation of a number of spectroscopically identifiable complexes.
Resumo:
The present study examines the shrinkage behaviour of residually derived black cotton (BC) soil and red soil compacted specimens that were subjected to air-drying from the swollen state. The soil specimens were compacted at varying dry density and moisture contents to simulate varied field conditions. The void ratio and moisture content of the swollen specimens were monitored during the drying process and relationship between them is analyzed. Shrinkage is represented as reduction in void ratio with decrease in water content of soil specimens. It is found to occur in three distinct stages. Total shrinkage magnitude depends on the type of clay mineral present. Variation in compaction conditions effect marginally total shrinkage magnitudes of BC soil specimens but have relatively more effect on red soil specimens. A linear relation is obtained between total shrinkage magnitude and volumetric water content of soil specimens in swollen state and can be used to predict the shrinkage magnitude of soils.
Resumo:
The type and amount of clay mineral plays an important role in the behaviour of fine-grained soils. Clay minerals are the primary source and moisture is often the external agent of swelling in soils. Also soils may exhibit increased/reduced swelling due to interaction with chemicals. Alkalis used in industrial operations are one such example. Concentrations of alkali and mineral type are the key factors in such interactions. The present paper reports the changes in the properties of an expansive Black Cotton soil containing a mixed layer mineral, rectorite upon interaction with high concentration caustic solutions. X-ray diffraction studies have shown that the rectorite present in the soil undergoes changes with increase in the concentration of alkali. Saponite gets transformed to nantronite. Small amount of kaolinitic mineral present in the soil also reacts with alkali producing some changes in its mineralogy. Many hydroxides are produced. Differential thermal analysis studies have been supportive of these changes. Consequent of these changes, the soil-specific surface increases, changes its Atterberg limits and free swell volume increases. The results have been supported by the characteristics and behaviour of samples contaminated in the field with alkali from an alumina extraction plant.
Resumo:
ZnO nanostructures were deposited on flexible polymer sheet and cotton fabrics at room temperature by activated reactive evaporation. Room-temperature photoluminescence spectrum of ZnO nanostructured film exhibited a week intrinsic UV emission and a strong broad yellow-orange visible emission. TEM and HRTEM studies show that the grown nanostructures are crystalline in nature and their growth direction was indentified to be along [002]. ZnO nanostructures grown on the copper-coated flexible polymer sheets exhibited stable field-emissio characteristics with a threshold voltage of 2.74 V/mu m (250 mu A) and a very large field enhancement factor (beta) of 23,213. Cotton fabric coated with ZnO nanostructures show an excellent antimicrobial activity against Staphylococcus aureus bacteria (Gram positive), and similar to 73% reduction in the bacterial population is achieved compared to uncoated fabrics after 4 h in viability. Using a shadow mask technique, we also selectively deposited the nanostructures at room temperature on polymer substrates.
Resumo:
Fly ashes are used to improve the properties of expansive soils. The paper brings out the effect of two different fly ashes containig different lime contents on shrinkage and swelling behaviour of expansive Indian Black cotton soil. Since the specific gravities of the fly ashes are considerably different,Void ratio at shrinkage limit and % of swelling are used to describe the shrinkage and swell behaviour of soils. Both fly ashes increase the shrinkage void ratio and decrease the % swell of the soil. While high lime fly ash is more effective in increasing the shrinkage void ratio, low lime flyash is more effective in reducing the swelling. Lime content which causes floculation of soil particle, is responsible for the differences.
Resumo:
Background: Cotton leaf curl Kokhran Virus-Dabawali (CLCuKV-Dab) is a monopartite begomovirus encoding two proteins V1 and V2 in the virion sense and four proteins Cl, C2, C3 and C4 in the complementary sense. The C4 protein of monopartite begomoviruses has been implicated to play a role in symptom determination and virus movement. The present work aims at the biochemical characterization of this protein. Methods: The C4 protein of CLCuKV-Dab was purified in fusion with GST and tested for the ability to hydrolyze ATP and other phosphate containing compounds. ATPase activity was assayed by using radiolabeled gamma-32P]-ATP and separating the product of reaction by thin layer chromatography. The hydrolysis of other compounds was monitored by the formation of a blue colored phosphomolybdate complex which was estimated by measuring the absorbance at 655 nm. Results: The purified GST-C4 protein exhibited metal ion dependent ATPase and inorganic pyrophosphatase activities. Deletion of a sequence resembling the catalytic motif present in phosphotyrosine phosphatases resulted in 70% reduction in both the activities. Mutational analysis suggested arginine 13 to be catalytically important for the ATPase and cysteine 8 for the pyrophosphatase activity of GST-C4. Interaction of V2 with GST-C4 resulted in an increase in both the enzymatic activities of GST-C4. Conclusions: The residues important for the enzymatic activities of GST-C4 are present in a motif different from the classical Walker motifs and the non-classical ATP binding motifs reported so far. General significance: The C4 protein of CLCuKV-Dab, a putative natively unfolded protein, exhibits enzymatic activities.
Resumo:
Cotton is a widely used raw material for textiles but drawbacks regarding their poor mechanical properties often limit their applications as functional materials. The present investigation involved process development for one step coating of cotton with silver nanoparticles (SNP) synthesized using Azadirachta indica and Citrus limon extract to develop functional textiles. Addition of starch to functional textiles led to efficient binding of nanoparticles to fabric and led to drastic decrease in release of silver from fabricated textiles after ten washing cycles enhancing their environment friendliness. Differential scanning calorimetry, scanning electron microscopy, FT-IR analysis and mechanical studies demonstrated efficient binding of nanoparticles to fabric through bio-based processes. The functionalized textiles developed by the bio-based methods showed significant antibacterial activity against E. coli and S. aureus (with 99% microbial reduction). Present work offers a simple procedure for coating SNP using bio-based approaches with promising applications in specialized functions.