19 resultados para Coset Enumeration
em Indian Institute of Science - Bangalore - Índia
Resumo:
Formulae for the generating functions for hypergraphs, dihypergraphs, oriented hypergraphs, selfcomplementary directed hypergraphs and self complementary hypergraphs are presented here.
Resumo:
Three dimensional clipping is a critical component of the 3D graphics pipeline. A new 3D clipping algorithm is presented in this paper. An efficient 2D clipping routine reported earlier has been used as a submodule. This algorithm uses a new classification scheme for lines of all possible orientations with respect to a rectangular parallelopiped view volume. The performance of this algorithm has been evaluated using exact arithmetic operation counts. It is shown that our algorithm requires less arithmetic operations than the Cyrus-Beck 3D clipping algorithm in all cases. It is also shown that for lines that intersect the clipping volume, our algorithm performs better than the Liang-Barsky 3D clipping algorithm.
Resumo:
Diatoms have become important organisms for monitoring freshwaters and their value has been recognised in Europe, American and African continents. If India is to include diatoms in the current suite of bioindicators, then thorough testing of diatom-based techniques is required. This paper provides guidance on methods through all stages of diatom collection from different habitats from streams and lakes, preparation and examination for the purposes of water quality assessment that can be adapted to most aquatic ecosystems in India.
Resumo:
This paper presents a method of partial automation of specification based regression testing, which we call ESSE (Explicit State Space Enumeration). The first step in ESSE method is the extraction of a finite state model of the system making use of an already tested version of the system under test (SUT). Thereafter, the finite state model thus obtained is used to compute good test sequences that can be used to regression test subsequent versions of the system. We present two new algorithms for test sequence computation - both based on our finite state model generated by the above method. We also provide the details and results of the experimental evaluation of ESSE method. Comparison with a practically used random-testing algorithm has shown substantial improvements.
Resumo:
The role of a computer emerged from modeling and analyzing concepts (ideas) to generate concepts. Research into methods for supporting conceptual design using automated synthesis had attracted much attention in the past decades. To find out how designers synthesize solution concepts for multi-state mechanical devices, ten experimental studies were conducted. Observations from these empirical studies would be used as the basis to develop knowledge involved in the multi-state design synthesis process. In this paper, we propose a computational representation for expressing the multi-state design task and for enumerating multi-state behaviors of kinematic pairs and mechanisms. This computational representation would be used to formulate computational methods for the synthesis process to develop a system for supporting design synthesis of multiple state mechanical devices by generating a comprehensive variety of solution alternatives.
Resumo:
We have recently reported significant association of non-polio enteroviruses (NPEVs) with acute and persistent diarrhea (18-21% of total diarrheal cases), and non-diarrheal Increased Frequency of Bowel Movements (IFoBM-ND) (about 29% of the NPEV infections) in children and that the NPEV-associated diarrhea was as significant as rotavirus diarrhea. However, their diarrhea-causing potential is yet to be demonstrated in an animal model system. Since the determination of virus titers by the traditional plaque assay takes 4-7 days, there is a need for development of a rapid method for virus titer determination to facilitate active clinical research on enterovirus-associated diarrhea. The goal of this study is to develop a cell-based rapid detection and enumeration method and to demonstrate the diarrhea-inducing potential of purified and characterized non-polio enteroviruses, which were isolated from diarrheic children. Here we describe generation of monoclonal and polyclonal antibodies against purified strains belonging to different serotypes, and development of an enzyme-linked immuno focus assay (ELIFA) for detection and enumeration of live NPEV particles in clinical and purified virus samples, and a newborn mouse model for NPEV diarrhea. Plaque-purified NPVEs, belonging to different serotypes, isolated from children with diarrhea, were grown in cell culture and purified by isopycnic CsCl density gradient centrifugation. By ELIFA, NPEVs could be detected and enumerated within 12 h post-infection. Our results demonstrated that Coxsackievirus B1 (CVB1) and CVB5 strains, isolated from diarrheic children, induced severe diarrhea in orally-inoculated 9-12 day-old mouse pups, fulfilling Koch's postulates. The methods described here would facilitate studies on NPEV-associated gastrointestinal disease. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Enumeration of adhered cells of Thiobacillus ferrooxidans on sulphide minerals through protein assay poses problems due to interference from dissolved mineral constituents. The manner in which sulphide minerals such as pyrite, chalcopyrite, sphalerite, arsenopyrite and pyrrhotite interfere with bacterial protein estimation is demonstrated. Such interferences can be minimised either through dilution or addition of H2O2 to the filtrate after hot alkaline digestion of the biotreated mineral samples.
Resumo:
The paper presents a novel slicing based method for computation of volume fractions in multi-material solids given as a B-rep whose faces are triangulated and shared by either one or two materials. Such objects occur naturally in geoscience applications and the said computation is necessary for property estimation problems and iterative forward modeling. Each facet in the model is cut by the planes delineating the given grid structure or grid cells. The method, instead of classifying the points or cells with respect to the solid, exploits the convexity of triangles and the simple axis-oriented disposition of the cutting surfaces to construct a novel intermediate space enumeration representation called slice-representation, from which both the cell containment test and the volume-fraction computation are done easily. Cartesian and cylindrical grids with uniform and non-uniform spacings have been dealt with in this paper. After slicing, each triangle contributes polygonal facets, with potential elliptical edges, to the grid cells through which it passes. The volume fractions of different materials in a grid cell that is in interaction with the material interfaces are obtained by accumulating the volume contributions computed from each facet in the grid cell. The method is fast, accurate, robust and memory efficient. Examples illustrating the method and performance are included in the paper.
Resumo:
Employing an error control code is one of the techniques to reduce the Peak-to-Average Power Ratio (PAPR) in a Orthogonal Frequency Division Multiplexing system, a well known class of such codes being the cosets of Reed-Muller codes. In this paper, we consider the class of such coset-codes of arbitrary linear codes and present a method of doubling the size of such a code without increasing the PAPR, by combining two such binary coset-codes. We identify the conditions under which we can employ this doubling more than once with no marginal increase in the PAPR value. Given a PAPR and length, our method has enabled to get the best coset-code (in terms of the size). Also, we show that the PAPR information of the coset-codes of the extended codes is obtainable from the PAPR of the corresponding coset-codes of the parent code. We have also shown a special type of lengthening is useful in PAPR studies.
Resumo:
A permanent 2 ha (200 m x 100 m) plot was established for long-term monitoring of plant diversity and dynamics in a tropical dry deciduous forest of Bhadra Wildlife Sanctuary, Karnataka, southern India. Enumeration of all woody plants >= 1 cm DBH (diameter at breast height) yielded a total of 1766 individuals that belonged to 46 species, 37 genera and 24 families. Combretaceae was the most abundant family in the forest with a family importance value of 68.3. Plant density varied from 20 - 90 individuals with an average 35 individuals/quadrat (20 m x 20 m). Randia dumetorum, with 466 individuals (representing 26.7 % of the total density 2 ha(-1)) with species importance value of 36.25, was the dominant species in the plot. The total basal area of the plot was 18.09 m(2) ha(-1) with a mean of 0.72 m(2) quadrat(-1). The highest basal area of the plot was contributed by Combretaceae (12.93 m(2) 2 ha(-1)) at family level and Terminalia tomentosa (5.58 m(2) 2 ha(-1)) at species level. The lowest diameter class (1-10 cm) had the highest density (1054 individuals 2 ha(-1)), but basal area was highest in the 80 - 90 cm diameter class (5.03m(2) 2 ha(-1)). Most of the species exhibited random or aggregated distribution over the plot. This study provides a baseline information on the dry forests of Bhadra Wildlife Sanctuary.
Resumo:
The extension of the superposition principle of the symmetries (P. Curie principle of symmetry) for the case of complete symmetry is given. The enumeration of all crystallographical groups of complete symmetry is presented, the number of elements having complete symmetry for each class of the crystals being indicated. The change of complete symmetry of the crystals under the phase transitions is obtained by superimposing the elements of complete symmetry of polar or axial vectors on the one hand, and the elements of complete symmetry of the crystals on the other. The tables of complete symmetry changes for the cubic, rhombic, monoclinic and triclinic crystals during the ferroelectric and ferromagnetic phase transitions are given.
Resumo:
We recently introduced the dynamical cluster approximation (DCA), a technique that includes short-ranged dynamical correlations in addition to the local dynamics of the dynamical mean-field approximation while preserving causality. The technique is based on an iterative self-consistency scheme on a finite-size periodic cluster. The dynamical mean-field approximation (exact result) is obtained by taking the cluster to a single site (the thermodynamic limit). Here, we provide details of our method, explicitly show that it is causal, systematic, Phi derivable, and that it becomes conserving as the cluster size increases. We demonstrate the DCA by applying it to a quantum Monte Carlo and exact enumeration study of the two-dimensional Falicov-Kimball model. The resulting spectral functions preserve causality, and the spectra and the charge-density-wave transition temperature converge quickly and systematically to the thermodynamic limit as the cluster size increases.
Resumo:
Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.
Resumo:
Given a parametrized n-dimensional SQL query template and a choice of query optimizer, a plan diagram is a color-coded pictorial enumeration of the execution plan choices of the optimizer over the query parameter space. These diagrams have proved to be a powerful metaphor for the analysis and redesign of modern optimizers, and are gaining currency in diverse industrial and academic institutions. However, their utility is adversely impacted by the impractically large computational overheads incurred when standard brute-force exhaustive approaches are used for producing fine-grained diagrams on high-dimensional query templates. In this paper, we investigate strategies for efficiently producing close approximations to complex plan diagrams. Our techniques are customized to the features available in the optimizer's API, ranging from the generic optimizers that provide only the optimal plan for a query, to those that also support costing of sub-optimal plans and enumerating rank-ordered lists of plans. The techniques collectively feature both random and grid sampling, as well as inference techniques based on nearest-neighbor classifiers, parametric query optimization and plan cost monotonicity. Extensive experimentation with a representative set of TPC-H and TPC-DS-based query templates on industrial-strength optimizers indicates that our techniques are capable of delivering 90% accurate diagrams while incurring less than 15% of the computational overheads of the exhaustive approach. In fact, for full-featured optimizers, we can guarantee zero error with less than 10% overheads. These approximation techniques have been implemented in the publicly available Picasso optimizer visualization tool.
Resumo:
The quality of tap water from water supplies from 14 districts of Kerala state, India was studied. Parameters like pH, water temperature, total dissolved solids, salinity, nitrates, chloride, hardness, magnesium, calcium, sodium, potassium, fluoride, sulphate, phosphates, and coliform bacteria were enumerated. The results showed that all water samples were contaminated by coliform bacteria. About 20% of the tap water samples from Alappuzha and 15% samples from Palakkad district are above desirable limits prescribed by Bureau of Indian Standards. The contamination of the source water (due to lack of community hygiene) and insufficient treatment are the major cause for the coliform contamination in the state. Water samples from Alappuzha and Palakkad have high ionic and fluoride content which could be attributed to the geology of the region. Water supplied for drinking in rural areas are relatively free of any contamination than the water supplied in urban area by municipalities, which may be attributed higher chances of contamination in urban area due to mismanagement of solid and liquid wastes. The study highlights the need for regular bacteriological enumeration along with water quality in addition to setting up decentralised region specific improved treatment system.