4 resultados para Corporation reports
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper describes a novel mimetic technique of using frequency domain approach and digital filters for automatic generation of EEG reports. Digitized EEG data files, transported on a cartridge, have been used for the analysis. The signals are filtered for alpha, beta, theta and delta bands with digital bandpass filters of fourth-order, cascaded, Butterworth, infinite impulse response (IIR) type. The maximum amplitude, mean frequency, continuity index and degree of asymmetry have been computed for a given EEG frequency band. Finally, searches for the presence of artifacts (eye movement or muscle artifacts) in the EEG records have been made.
Resumo:
This paper reports the TR3 spectral studies on perfluorinated organic systems with the objective to understand the influence of perfluorination on the excited states. We have recorded the TR3 spectra and Raman excitation profiles of the triplet excited states of decafluorobenzophenone and fluoranil. It is found that the influence of perfluorination is more pronounced in the triplet excited state than the ground state and thus leads to enhanced reactivity for perfluorinated compounds through larger structural distortions.
Resumo:
Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.
Resumo:
Conceptual design involves identification of required functions of the intended design, generation of concepts to fulfill these functions, and evaluation of these concepts to select the most promising ones for further development. The focus of this paper is the second phase-concept generation, in which a challenge has been to develop possible physical embodiments to offer designers for exploration and evaluation. This paper investigates the issue of how to transform and thus synthesise possible generic physical embodiments and reports an implemented method that could automatically generate these embodiments. In this paper, a method is proposed to transform a variety of possible initial solutions to a design problem into a set of physical solutions that are described in terms of abstraction of mechanical movements. The underlying principle of this method is to make it possible to link common attributes between a specific abstract representation and its possible physical objects. For a given input, this method can produce a set of concepts in terms of their generic physical embodiments. The method can be used to support designers to start with a given input-output function and systematically search for physical objects for design consideration in terms of simplified functional, spatial, and mechanical movement requirements.