92 resultados para Coreference resolution
em Indian Institute of Science - Bangalore - Índia
Resumo:
Gelonin is a single chain ribosome inactivating protein (RIP) with potential application in the treatment of cancer and AIDS. Diffraction quality crystals grown using PEG3350, belong to the space group P2(1), with it a = 49.4 Angstrom b = 44.9 Angstrom, c = 137.4 Angstrom and beta = 98.4 degrees, and contain two molecules in the asymmetric unit. Diffraction data collected to 1.8 Angstrom resolution has a R(m) value of 7.3%. Structure of gelonin has been solved by the molecular replacement method, using ricin A chain as the search model. Crystallographic refinement using X-PLOR resulted in a model for which the r.m.s deviations from ideal bond lengths and bond angles are 0.012 Angstrom and 2.7 degrees, respectively The final R-factor is 18.4% for 39,806 reflections for which I > 1.0 sigma(I).The C-alpha atoms of the two molecules in the asymmetric unit superpose to within 0.38 Angstrom for 247 atom pairs. The overall fold of gelonin is similar to that of other RIPs such as ricin A chain and alpha-momorcharin, the r.m.s.d. for C-alpha superpositions being 1.3 and 1.4 Angstrom, respectively The-catalytic residues (Glu166, Arg169 and Tyr113) in the active site form a hydrogen bond scheme similar to that observed in other RIPs. The conformation of Tyr74 in the active site, however, is significantly different from that in alpha-momorcharin. Three well defined water molecules are located in the active site cavity and one of them, X319, superposes to within 0.2 Angstrom of a corresponding water molecule in the structure of alpha-momorcharin. Any of the three could be the substrate water molecule in the hydrolysis reaction catalysed by gelonin.Difference electron density for a N-linked sugar moiety has been observed near only one of the two potential glycosylation sites in the sequence. The amino acid at position 239 has been established as Lys by calculation of omit electron density maps.The two cysteine residues in the sequence, Cys44 and Cys50, form a disulphide bond, and are therefore not available for disulphide conjugation with antibodies. Based on the structure, the region of the molecule that is involved in intradimer interactions is suggested to be suitable for introducing a Cys residue for purposes of conjugation with an antibody to produce useful immunotoxins.
Resumo:
The precipitation processes in dilute nitrogen alloys of titanium have been examined in detail by conventional transmission electron microscopy (CTEM) and high-resolution electron microscopy (HREM). The alloy Ti-2 at. pct N on quenching from its high-temperature beta phase field has been found to undergo early stages of decomposition. The supersaturated solid solution (alpha''-hcp) on decomposition gives rise to an intimately mixed, irresolvable product microstructure. The associated strong tweed contrast presents difficulties in understanding the characteristic features of the process. Therefore, HREM has been carried out with a view to getting a clear picture of the decomposition process. Studies on the quenched samples of the alloy suggest the formation of solute-rich zones of a few atom layers thick, randomly distributed throughout the matrix. On aging, these zones grow to a size beyond which the precipitate/matrix interfaces appear to become incoherent and the alpha' (tetragonal) product phase is seen distinctly. The structural details, the crystallography of the precipitation process, and the sequence of precipitation reaction in the system are illustrated.
Resumo:
The X-ray structure of recombinant bovine pancreatic phospholipase A(2) (PLA2), which specifically catalyzes the cleavage of the sn-2 acylester bond of phospholipids, has been refined at 1.5 Angstrom resolution. The crystal belongs to the space group P2(1)2(1)2(1) with unit-cell parameters a = 47.12, b = 64.59 and c = 38.14 Angstrom similar to the native enzyme reported previously by Dijkstra et nl. [J. Mel. Biol. (1981), 147, 97-123]. The refinement converged to an R value of 18.4% (R-free = 22.8%) for 16 374 reflections between 10.0 and 1.5 Angstrom resolution. The surface-loop residues (60-70) art: ordered in the present orthorhombic recombinant enzyme, but disordered in the trigonal recombinant enzyme. The active-site residues, His48, Asp99, and the catalytic water superimpose well with the trigonal form. Besides the catalytic water which is hydrogen bonded to His48, it is often seen that there is a second water attached to the same N atom of His48 and simultaneously hydrogen bonded to the O atom of Asp49. It is thought that the second water facilitates the tautomerism of His48 for enzyme catalysis, The catalytic water is also hydrogen bonded to the equatorial water coordinated to the calcium ion, In addition to the equatorial water, there is also an axial calcium water and the additional structural water. These five common water molecules are hydrogen bonded to the additional 16 water molecules in the present orthorhombic structure which may further enhance the structural integrity of the active site. Besides the protein and one calcium ion, a total of 134 water molecules were located in the present high-resolution refinement.
Resumo:
Remote sensing provides a lucid and effective means for crop coverage identification. Crop coverage identification is a very important technique, as it provides vital information on the type and extent of crop cultivated in a particular area. This information has immense potential in the planning for further cultivation activities and for optimal usage of the available fertile land. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Further, image classification forms the core of the solution to the crop coverage identification problem. No single classifier can prove to satisfactorily classify all the basic crop cover mapping problems of a cultivated region. We present in this paper the experimental results of multiple classification techniques for the problem of crop cover mapping of a cultivated region. A detailed comparison of the algorithms inspired by social behaviour of insects and conventional statistical method for crop classification is presented in this paper. These include the Maximum Likelihood Classifier (MLC), Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO) techniques. The high resolution satellite image has been used for the experiments.
Resumo:
A new photothermal imaging process which utilizes no silver has been demonstrated in obliquely deposited Se-Ge films. Band-gap irradiation of Se-Ge films has been found to give rise to phases of the type SeOx, GeO, and Se as borne by x-ray initiated Auger electron spectroscopy and x-ray photoelectron spectroscopy. Annealing of SeOx leads to the formation of SeO2. The large (several orders of magnitude) difference in vapor pressures of SeO2 and Se-Ge films results in differential evaporation of the films when annealed around 200 °C, thereby leading to imaging. Such a large contrast in evaporation rates between the exposed and unexposed regions has great potential applications in high resolution image storage and phase holography. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
A comparison is made of the performance of a weather Doppler radar with a staggered pulse repetition time and a radar with a random (but known) phase. As a standard for this comparison, the specifications of the forthcoming next generation weather radar (NEXRAD) are used. A statistical analysis of the spectral momentestimates for the staggered scheme is developed, and a theoretical expression for the signal-to-noise ratio due to recohering-filteringrecohering for the random phase radar is obtained. Algorithms for assignment of correct ranges to pertinent spectral moments for both techniques are presented.
Resumo:
Racemic gossypol has been resolved by HPLC separation of diastereomeric (−) norepinephrine adducts on a reverse-phase column. The binding constants for the interaction of the three gossypol forms (+, − and −) with human and bovine serum albumins have been determined by fluoresence quenching studies. The KD values demonstrate that all three forms bind equally effectively to the two proteins, suggesting an absence of chiral discrimination in albumin-gossypol interactions. Circular dichroism studies of (+)-gossypol binding to the model dibasic peptides, Boc-Lys-Pro-Aib-Lys-NHMe and gramicidin S, suggesting that distortions of binaphthyl geometry may occur only for specific orientations of interacting residues at the receptor site.
Resumo:
Bees of the genus Apis are important foragers of nectar and pollen resources. Although the European honeybee, Apis mellifera, has been well studied with respect to its sensory abilities, learning behaviour and role as pollinators, much less is known about the other Apis species. We studied the anatomical spatial resolution and absolute sensitivity of the eyes of three sympatric species of Asian honeybees, Apis cerana, Apis florea and Apis dorsata and compared them with the eyes of A. mellifera. Of these four species, the giant honeybee A. dorsata (which forages during moonlit nights) has the lowest spatial resolution and the most sensitive eyes, followed by A. mellifera, A. cerana and the dwarf honeybee, A. florea (which has the smallest acceptance angles and the least sensitive eyes). Moreover, unlike the strictly diurnal A. cerana and A. florea, A. dorsata possess large ocelli, a feature that it shares with all dim-light bees. However, the eyes of the facultatively nocturnal A. dorsata are much less sensitive than those of known obligately nocturnal bees such as Megalopta genalis in Panama and Xylocopa tranquebarica in India. The differences in sensitivity between the eyes of A. dorsata and other strictly diurnal Apis species cannot alone explain why the former is able to fly, orient and forage at half-moon light levels. We assume that additional neuronal adaptations, as has been proposed for A. mellifera, M. genalis and X. tranquebarica, might exist in A. dorsata.
Resumo:
We propose a novel technique for robust voiced/unvoiced segment detection in noisy speech, based on local polynomial regression. The local polynomial model is well-suited for voiced segments in speech. The unvoiced segments are noise-like and do not exhibit any smooth structure. This property of smoothness is used for devising a new metric called the variance ratio metric, which, after thresholding, indicates the voiced/unvoiced boundaries with 75% accuracy for 0dB global signal-to-noise ratio (SNR). A novelty of our algorithm is that it processes the signal continuously, sample-by-sample rather than frame-by-frame. Simulation results on TIMIT speech database (downsampled to 8kHz) for various SNRs are presented to illustrate the performance of the new algorithm. Results indicate that the algorithm is robust even in high noise levels.
Resumo:
Sesbania mosaic virus (SMV) is an isometric, ss-RNA plant virus found infecting Sesbania grandiflora plants in fields near Tirupathi, South India. The virus particles, which sediment at 116 S at pH 5.5, swell upon treatment with EDTA at pH 7.5 resulting in the reduction of the sedimentation coefficient to 108 S. SMV coat protein amino acid sequence was determined and found to have approximately 60% amino acid sequence identity with that of southern bean mosaic virus (SBMV). The amino terminal 60 residue segment, which contains a number of positively charged residues, is less well conserved between SMV and SBMV when compared to the rest of the sequence. The 3D structure of SMV was determined at 3.0 Å resolution by molecular replacement techniques using SBMV structure as the initial phasing model. The icosahedral asymmetric unit was found to contain four calcium ions occurring in inter subunit interfaces and three protein subunits, designated A, B and C. The conformation of the C subunit appears to be different from those of A and B in several segments of the polypeptide. These observations coupled with structural studies on SMV partially depleted of calcium suggest a plausible mechanisms for the initiation of the disassembly of the virus capsid.
Resumo:
The subspace intersection method (SIM) provides unbiased bearing estimates of multiple acoustic sources in a range-independent shallow ocean using a one-dimensional search without prior knowledge of source ranges and depths. The original formulation of this method is based on deployment of a horizontal linear array of hydrophones which measure acoustic pressure. In this paper, we extend SIM to an array of acoustic vector sensors which measure pressure as well as all components of particle velocity. Use of vector sensors reduces the minimum number of sensors required by a factor of 4, and also eliminates the constraint that the intersensor spacing should not exceed half wavelength. The additional information provided by the vector sensors leads to performance enhancement in the form of lower estimation error and higher resolution.
Resumo:
Background: The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the C alpha atoms which are modeled with modest accuracy. Methodology/Principal Findings: In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of C alpha atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of C alpha. We extend the method further to recognize potential protein-protein interface residues. Conclusion/Significance: Our approach to identify buried and exposed residues solely from the positions of C alpha atoms resulted in an accuracy of 84%, sensitivity of 83-89% and specificity of 67-94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70-96% and specificity of 58-94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from C alpha positions and all-atom models suggested that, recognition of interfacial residues using C alpha atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only C alpha positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.
Resumo:
In this paper we discuss a new technique to image the surfaces of metallic substrates using field emission from a pointed array of carbon nanotubes (CNTs). We consider a pointed height distribution of the CNT array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam of electrons localized at the center of the array. The CNT array on a metallic substrate is considered as the cathode and the test substrate as the anode. Scanning the test Substrate with the cathode reveals that the field emission current is highly sensitive to the surface features with nanometer resolution. Surface features of semi-circular, triangular and rectangular geometries (projections and grooves) are considered for simulation. This surface scanning/mapping technique can be applied for surface roughness measurements with nanoscale accuracy. micro/nano damage detection, high precision displacement sensors, vibrometers and accelerometers. among other applications.
Resumo:
We investigate the ability of a global atmospheric general circulation model (AGCM) to reproduce observed 20 year return values of the annual maximum daily precipitation totals over the continental United States as a function of horizontal resolution. We find that at the high resolutions enabled by contemporary supercomputers, the AGCM can produce values of comparable magnitude to high quality observations. However, at the resolutions typical of the coupled general circulation models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, the precipitation return values are severely underestimated.