6 resultados para Convexity

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the following question: Let S (1) and S (2) be two smooth, totally-real surfaces in C-2 that contain the origin. If the union of their tangent planes is locally polynomially convex at the origin, then is S-1 boolean OR S-2 locally polynomially convex at the origin? If T (0) S (1) a (c) T (0) S (2) = {0}, then it is a folk result that the answer is yes. We discuss an obstruction to the presumed proof, and provide a different approach. When dim(R)(T0S1 boolean AND T0S2) = 1, we present a geometric condition under which no consistent answer to the above question exists. We then discuss conditions under which we can expect local polynomial convexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide some conditions for the graph of a Holder-continuous function on (D) over bar, where (D) over bar is a closed disk in C, to be polynomially convex. Almost all sufficient conditions known to date - provided the function (say F) is smooth - arise from versions of the Weierstrass Approximation Theorem on (D) over bar. These conditions often fail to yield any conclusion if rank(R)DF is not maximal on a sufficiently large subset of (D) over bar. We bypass this difficulty by introducing a technique that relies on the interplay of certain plurisubharmonic functions. This technique also allows us to make some observations on the polynomial hull of a graph in C(2) at an isolated complex tangency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-level loop transformations are a key instrument in mapping computational kernels to effectively exploit the resources in modern processor architectures. Nevertheless, selecting required compositions of loop transformations to achieve this remains a significantly challenging task; current compilers may be off by orders of magnitude in performance compared to hand-optimized programs. To address this fundamental challenge, we first present a convex characterization of all distinct, semantics-preserving, multidimensional affine transformations. We then bring together algebraic, algorithmic, and performance analysis results to design a tractable optimization algorithm over this highly expressive space. Our framework has been implemented and validated experimentally on a representative set of benchmarks running on state-of-the-art multi-core platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a novel slicing based method for computation of volume fractions in multi-material solids given as a B-rep whose faces are triangulated and shared by either one or two materials. Such objects occur naturally in geoscience applications and the said computation is necessary for property estimation problems and iterative forward modeling. Each facet in the model is cut by the planes delineating the given grid structure or grid cells. The method, instead of classifying the points or cells with respect to the solid, exploits the convexity of triangles and the simple axis-oriented disposition of the cutting surfaces to construct a novel intermediate space enumeration representation called slice-representation, from which both the cell containment test and the volume-fraction computation are done easily. Cartesian and cylindrical grids with uniform and non-uniform spacings have been dealt with in this paper. After slicing, each triangle contributes polygonal facets, with potential elliptical edges, to the grid cells through which it passes. The volume fractions of different materials in a grid cell that is in interaction with the material interfaces are obtained by accumulating the volume contributions computed from each facet in the grid cell. The method is fast, accurate, robust and memory efficient. Examples illustrating the method and performance are included in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initial motivation for this paper is to discuss a more concrete approach to an approximation theorem of Axler and Shields, which says that the uniform algebra on the closed unit disc (D) over bar generated by z and h, where h is a nowhere-holomorphic harmonic function on D that is continuous up to partial derivative D, equals C((D) over bar). The abstract tools used by Axler and Shields make harmonicity of h an essential condition for their result. We use the concepts of plurisubharmonicity and polynomial convexity to show that, in fact, the same conclusion is reached if h is replaced by h + R, where R is a non-harmonic perturbation whose Laplacian is ``small'' in a certain sense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radially homogeneous bulk alloys of GaxIn1-xSb in the range 0.7 < x < 0.8, have been grown by vertical Bridgman technique. The factors affecting the interface shape during the growth were optimised to achieve zero convexity. From a series of experiments, a critical ratio of the temperature gradient (G) of the furnace at the melting point of the melt composition to the ampoule lowering speed (v) was deduced for attaining the planarity of the melt-solid interface. The studies carried out on directional solidification of Ga0.77In0.23Sb mixed crystals employing planar melt-solid interface exhibited superior quality than those with nonplanar interfaces. The solutions to certain problems encountered during the synthesis and growth of the compound were discussed. (C) 1999 Elsevier Science B.V. All rights reserved.