367 resultados para Convex piecewise-linear costs
em Indian Institute of Science - Bangalore - Índia
Resumo:
A branch and bound type algorithm is presented in this paper to the problem of finding a transportation schedule which minimises the total transportation cost, where the transportation cost over each route is assumed to be a piecewice linear continuous convex function with increasing slopes. The algorithm is an extension of the work done by Balachandran and Perry, in which the transportation cost over each route is assumed to beapiecewise linear discontinuous function with decreasing slopes. A numerical example is solved illustrating the algorithm.
Resumo:
A methodology is presented for the synthesis of analog circuits using piecewise linear (PWL) approximations. The function to be synthesized is divided into PWL segments such that each segment can be realized using elementary MOS current-mode programmable-gain circuits. A number of these elementary current-mode circuits when connected in parallel, it is possible to realize piecewise linear approximation of any arbitrary analog function with in the allowed approximation error bounds. Simulation results show a close agreement between the desired function and the synthesized output. The number of PWL segments used for approximation and hence the circuit area is determined by the required accuracy and the smoothness of the resulting function.
Resumo:
Topology-based methods have been successfully used for the analysis and visualization of piecewise-linear functions defined on triangle meshes. This paper describes a mechanism for extending these methods to piecewise-quadratic functions defined on triangulations of surfaces. Each triangular patch is tessellated into monotone regions, so that existing algorithms for computing topological representations of piecewise-linear functions may be applied directly to the piecewise-quadratic function. In particular, the tessellation is used for computing the Reeb graph, a topological data structure that provides a succinct representation of level sets of the function.
Resumo:
The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.
Resumo:
The performance of a plate clutch in a two-inertia power transmission system is analysed assuming negligible compliance and using a piecewise linear function to represent the clutch torque characteristic. Expressions defining, for all linear segments of the clutch torque characteristic, dimensionless input and output velocities of the clutch and dimensionless slip period are presented. The use of these expressions in preparing design charts to aid analysis and design of the plate clutch is outlined.
Resumo:
We present two constructions in this paper: (a) a 10-vertex triangulation CP(10)(2) of the complex projective plane CP(2) as a subcomplex of the join of the standard sphere (S(4)(2)) and the standard real projective plane (RP(6)(2), the decahedron), its automorphism group is A(4); (b) a 12-vertex triangulation (S(2) x S(2))(12) of S(2) x S(2) with automorphism group 2S(5), the Schur double cover of the symmetric group S(5). It is obtained by generalized bistellar moves from a simplicial subdivision of the standard cell structure of S(2) x S(2). Both constructions have surprising and intimate relationships with the icosahedron. It is well known that CP(2) has S(2) x S(2) as a two-fold branched cover; we construct the triangulation CP(10)(2) of CP(2) by presenting a simplicial realization of this covering map S(2) x S(2) -> CP(2). The domain of this simplicial map is a simplicial subdivision of the standard cell structure of S(2) x S(2), different from the triangulation alluded to in (b). This gives a new proof that Kuhnel's CP(9)(2) triangulates CP(2). It is also shown that CP(10)(2) and (S(2) x S(2))(12) induce the standard piecewise linear structure on CP(2) and S(2) x S(2) respectively.
Resumo:
The three-point bending behavior of sandwich beams made up of jute epoxy skins and piecewise linear functionally graded (FG) rubber core reinforced with fly ash filler is investigated. This work studies the influence of the parameters such as weight fraction of fly ash, core to thickness ratio, and orientation of jute on specific bending modulus and strength. The load displacement response of the sandwich is traced to evaluate the specific modulus and strength. FG core samples are prepared by using conventional casting technique and sandwich by hand layup. Presence of gradation is quantified experimentally. Results of bending test indicate that specific modulus and strength are primarily governed by filler content and core to sandwich thickness ratio. FG sandwiches with different gradation configurations (uniform, linear, and piecewise linear) are modeled using finite element analysis (ANSYS 5.4) to evaluate specific strength which is subsequently compared with the experimental results and the best gradation configuration is presented. POLYM. COMPOS., 32:1541-1551, 2011. (C) 2011 Society of Plastics Engineers
Resumo:
In this paper, we consider the problem of time series classification. Using piecewise linear interpolation various novel kernels are obtained which can be used with Support vector machines for designing classifiers capable of deciding the class of a given time series. The approach is general and is applicable in many scenarios. We apply the method to the task of Online Tamil handwritten character recognition with promising results.
Resumo:
Electronic exchanges are double-sided marketplaces that allow multiple buyers to trade with multiple sellers, with aggregation of demand and supply across the bids to maximize the revenue in the market. Two important issues in the design of exchanges are (1) trade determination (determining the number of goods traded between any buyer-seller pair) and (2) pricing. In this paper we address the trade determination issue for one-shot, multi-attribute exchanges that trade multiple units of the same good. The bids are configurable with separable additive price functions over the attributes and each function is continuous and piecewise linear. We model trade determination as mixed integer programming problems for different possible bid structures and show that even in two-attribute exchanges, trade determination is NP-hard for certain bid structures. We also make some observations on the pricing issues that are closely related to the mixed integer formulations.
Resumo:
The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL) function defined over manifolds and non-manifolds. The key idea in the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.
Resumo:
For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.
Resumo:
We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a novel algorithm for piecewise linear regression which can learn continuous as well as discontinuous piecewise linear functions. The main idea is to repeatedly partition the data and learn a linear model in each partition. The proposed algorithm is similar in spirit to k-means clustering algorithm. We show that our algorithm can also be viewed as a special case of an EM algorithm for maximum likelihood estimation under a reasonable probability model. We empirically demonstrate the effectiveness of our approach by comparing its performance with that of the state of art algorithms on various datasets. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Package-board co-design plays a crucial role in determining the performance of high-speed systems. Although there exist several commercial solutions for electromagnetic analysis and verification, lack of Computer Aided Design (CAD) tools for SI aware design and synthesis lead to longer design cycles and non-optimal package-board interconnect geometries. In this work, the functional similarities between package-board design and radio-frequency (RF) imaging are explored. Consequently, qualitative methods common to the imaging community, like Tikhonov Regularization (TR) and Landweber method are applied to solve multi-objective, multi-variable package design problems. In addition, a new hierarchical iterative piecewise linear algorithm is developed as a wrapper over LBP for an efficient solution in the design space.
Resumo:
In this paper, we consider non-linear transceiver designs for multiuser multi-input multi-output (MIMO) down-link in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas and each user terminal is equipped with multiple receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for inter-user interference pre-cancellation at the transmitter. We investigate robust THP transceiver designs based on the minimization of BS transmit power with mean square error (MSE) constraints, and balancing of MSE among users with a constraint on the total BS transmit power. We show that these design problems can be solved by iterative algorithms, wherein each iteration involves a pair of convex optimization problems. The robustness of the proposed algorithms to imperfections in CSIT is illustrated through simulations.