37 resultados para Controls and Control Theory
em Indian Institute of Science - Bangalore - Índia
Resumo:
The stochastic version of Pontryagin's maximum principle is applied to determine an optimal maintenance policy of equipment subject to random deterioration. The deterioration of the equipment with age is modelled as a random process. Next the model is generalized to include random catastrophic failure of the equipment. The optimal maintenance policy is derived for two special probability distributions of time to failure of the equipment, namely, exponential and Weibull distributions Both the salvage value and deterioration rate of the equipment are treated as state variables and the maintenance as a control variable. The result is illustrated by an example
Resumo:
As an example of a front propagation, we study the propagation of a three-dimensional nonlinear wavefront into a polytropic gas in a uniform state and at rest. The successive positions and geometry of the wavefront are obtained by solving the conservation form of equations of a weakly nonlinear ray theory. The proposed set of equations forms a weakly hyperbolic system of seven conservation laws with an additional vector constraint, each of whose components is a divergence-free condition. This constraint is an involution for the system of conservation laws, and it is termed a geometric solenoidal constraint. The analysis of a Cauchy problem for the linearized system shows that when this constraint is satisfied initially, the solution does not exhibit any Jordan mode. For the numerical simulation of the conservation laws we employ a high resolution central scheme. The second order accuracy of the scheme is achieved by using MUSCL-type reconstructions and Runge-Kutta time discretizations. A constrained transport-type technique is used to enforce the geometric solenoidal constraint. The results of several numerical experiments are presented, which confirm the efficiency and robustness of the proposed numerical method and the control of the Jordan mode.
Resumo:
In this paper guidance laws to intercept stationary and constant velocity targets at a desired impact angle, based on sliding mode control theory, are proposed. The desired impact angle, which is defined in terms of a desired line-of-sight (LOS) angle, is achieved in finite time by selecting the missile's lateral acceleration (latax) to enforce non-singular terminal sliding mode on a switching surface designed using this desired LOS angle and based on non-linear engagement dynamics. Numerical simulation results are presented to validate the proposed guidance laws for different initial engagement geometries and impact angles.
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.
Resumo:
In this paper a nonlinear control has been designed using the dynamic inversion approach for automatic landing of unmanned aerial vehicles (UAVs), along with associated path planning. This is a difficult problem because of light weight of UAVs and strong coupling between longitudinal and lateral modes. The landing maneuver of the UAV is divided into approach, glideslope and flare. In the approach UAV aligns with the centerline of the runway by heading angle correction. In glideslope and flare the UAV follows straight line and exponential curves respectively in the pitch plane with no lateral deviations. The glideslope and flare path are scheduled as a function of approach distance from runway. The trajectory parameters are calculated such that the sink rate at touchdown remains within specified bounds. It is also ensured that the transition from the glideslope to flare path is smooth by ensuring C-1 continuity at the transition. In the outer loop, the roll rate command is generated by assuring a coordinated turn in the alignment segment and by assuring zero bank angle in the glideslope and flare segments. The pitch rate command is generated from the error in altitude to control the deviations from the landing trajectory. The yaw rate command is generated from the required heading correction. In the inner loop, the aileron, elevator and rudder deflections are computed together to track the required body rate commands. Moreover, it is also ensured that the forward velocity of the UAV at the touch down remains close to a desired value by manipulating the thrust of the vehicle. A nonlinear six-DOF model, which has been developed from extensive wind-tunnel testing, is used both for control design as well as to validate it.
Resumo:
An important limitation of the existing IGC algorithms, is that they do not explicitly exploit the inherent time scale separation that exist in aerospace vehicles between rotational and translational motions and hence can be ineffective. To address this issue, a two-loop partial integrated guidance and control (PIGC) scheme has been proposed in this paper. In this design, the outer loop uses a recently developed, computationally efficient, optimal control formulation named as model predictive static programming. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the Dynamic inversion philosophy. Uncommonly, Six-Degree of freedom (Six-DOF) model is used directly in both the loops. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Comparative studies of PIGC with one loop IGC and conventional three loop design were carried out for engaging incoming high speed target. Simulation studies demonstrate the usefulness of this method.
Resumo:
It is pointed out that the superoperator formalism, developed for the calculation of ionization potentials in molecular physics, is a very powerful tool in chemisorption theory. This is demonstrated by applying the formalism to the Anderson-Newns model and by showing how the different approximate solutions can be obtained by elegant and systematic procedures. It is also pointed out that using the formalism, solutions for more complicated hamiltonians can easily be obtained.
Resumo:
Inducible nitric oxide synthase (iNOS) has important functions in innate immunity and regulation of immune functions. Here, the role of iNOS in the pathogenesis of various intracellular bacterial infections is discussed. These pathogens have also evolved a broad array of strategies to repair damage by reactive nitrogen intermediates, and to suppress or inhibit functions of iNOS.
Resumo:
An analysis and design study using Shape Memory Alloy (SMA) wire integrated beam and its buckling shape control are reported. The dynamical system performance is analyzed with a mathematical set-up involving nonlocal and rate sensitive kinetics of phase transformation in the SMA wire. A standard phenomenological constitutive model reported by Brinson (1993) is modified by considering certain consistency conditions in the material property tensors and by eliminating spurious singularity. Considering the inhomogeneity effects, a finite element model of the SMA wire is developed. Simulations are carried out to study the buckling shape control of a beam integrated with SMA wire.
Resumo:
This chapter presents the real time validation of fixed order robust 112 controller designed for the lateral stabilisation of a micro air vehicle named Sarika2. Digital signal processor (DSP) based onboard computer named flight instrumentation controller (FIC) is designed to operate under automatic or manual mode. FIC gathers data from multitude of sensors and is capable of closed loop control to enable autonomous flight. Fixed order lateral H-2 controller designed with the features such as incorporation of level I flying qualities, gust alleviation and noise rejection is coded on to the FIC. Challenging real time hardware in loop simulation (HILS) is done with dSPACE1104 RTI/RTW. Responses obtained from the HILS are compared with those obtained from the offline simulation. Finally, flight trials are conducted to demonstrate the satisfactory performance of the closed loop system. The generic design methodology developed is applicable to all classes of Mini and Micro air vehicles.
Resumo:
A finite circular cylindrical shell subjected to a band of uniform pressure on its outer rim was investigated, using three-dimensional elasticity theory and the classical shell theories of Timoshenko (or Donnell) and Flügge. Detailed comparison of the resulting stresses and displacements was carried out for shells with ratios of inner to outer shell radii equal to 0.80, 0.85, 0.90 and 0.93 and for ratios of outer shell diameter to length of the shell equal to 0.5, 1 and 2. The ratio of band width to length of the shell was 0.2 and Poisson's ratio used was equal to 0.3. An Elliot 803 digital computer was used for numerical computations.
Resumo:
The paper proposes a time scale separated partial integrated guidance and control of an interceptor for engaging high speed targets in the terminal phase. In this two loop design, the outer loop is an optimal control formulation based on nonlinear model predictive spread control philosophies. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the dynamicinversion philosophy. However, unlike conventional designs, in both the loops the Six degree of freedom (Six-DOF) interceptor model is used directly. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Six-DOF simulation studies have been carried out accounting for three dimensional engagement geometry. Different comparison studies were also conducted to measure the performance of the algorithm.