107 resultados para Continuous programming

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new `generalized model predictive static programming (G-MPSP)' technique is presented in this paper in the continuous time framework for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. A key feature of the technique is backward propagation of a small-dimensional weight matrix dynamics, using which the control history gets updated. This feature, as well as the fact that it leads to a static optimization problem, are the reasons for its high computational efficiency. It has been shown that under Euler integration, it is equivalent to the existing model predictive static programming technique, which operates on a discrete-time approximation of the problem. Performance of the proposed technique is demonstrated by solving a challenging three-dimensional impact angle constrained missile guidance problem. The problem demands that the missile must meet constraints on both azimuth and elevation angles in addition to achieving near zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Both stationary and maneuvering ground targets are considered in the simulation studies. Effectiveness of the proposed guidance has been verified by considering first order autopilot lag as well as various target maneuvers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we study risk-sensitive control problem with controlled continuous time Markov chain state dynamics. Using multiplicative dynamic programming principle along with the atomic structure of the state dynamics, we prove the existence and a characterization of optimal risk-sensitive control under geometric ergodicity of the state dynamics along with a smallness condition on the running cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work studies the extent of asymmetric flow in water models of continuous casting molds of two different configurations. In the molds where fluid is discharged through multiple holes at the bottom, the flow pattern in the lower portion depends on the size of the lower two recirculating domains. If they reach the mold bottom, the flow pattern in the lower portion is symmetrical about the central plane; otherwise, it is asymmetrical. On the other hand, in the molds where the fluid is discharged through the entire mold cross section, the flow pattern is always asymmetrical if the aspect ratio is 1:6.25 or more. The fluid jet swirls while emerging through the nozzle. The interaction of the swirling Jets with the wide sidewalls of the mold gives rise to asymmetrical flow inside the mold. In the molds with lower aspect ratios, where the jets do not touch the wide side walls, the flow pattern is symmetrical about the central plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining the philosophies of nonlinear model predictive control and approximate dynamic programming, a new suboptimal control design technique is presented in this paper, named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints. This technique is computationally efficient, and hence, can possibly be implemented online. The effectiveness of the proposed method is demonstrated by designing an ascent phase guidance scheme for a ballistic missile propelled by solid motors. A comparison study with a conventional gradient method shows that the MPSP solution is quite close to the optimal solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the programming an FPGA (Field Programmable Gate Array) to emulate the dynamics of DC machines. FPGA allows high speed real time simulation with high precision. The described design includes block diagram representation of DC machine, which contain all arithmetic and logical operations. The real time simulation of the machine in FPGA is controlled by user interfaces they are Keypad interface, LCD display on-line and digital to analog converter. This approach provides emulation of electrical machine by changing the parameters. Separately Exited DC machine implemented and experimental results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method of specifying the syntax of programming languages, known as hierarchical language specifications (HLS), is proposed. Efficient parallel algorithms for parsing languages generated by HLS are presented. These algorithms run on an exclusive-read exclusive-write parallel random-access machine. They require O(n) processors and O(log2n) time, where n is the length of the string to be parsed. The most important feature of these algorithms is that they do not use a stack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional Programming (FP) systems are modified and extended to form Nondeterministic Functional Programming (NFP) systems in which nondeterministic programs can be specified and both deterministic and nondeterministic programs can be verified essentially within the system. It is shown that the algebra of NFP programs has simpler laws in comparison with the algebra of FP programs. "Regular" forms are introduced to put forward a disciplined way of reasoning about programs. Finally, an alternative definition of "linear" forms is proposed for reasoning about recursively defined programs. This definition, when used to test the linearity of forms, results in simpler verification conditions than those generated by the original definition of linear forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the results on primal methods for Bottleneck Linear Programming (BLP) problem are briefly surveyed, the primal method is presented and the degenerate case related to Bottleneck Transportation Problem (BTP) is explicitly considered. The algorithm is based on the idea of using auxiliary coefficients as is done by Garfinkel and Rao [6]. The modification presented for the BTP rectifies the defect in Hammer's method in the case of degenerate basic feasible solution. Illustrative numerical examples are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An error-free computational approach is employed for finding the integer solution to a system of linear equations, using finite-field arithmetic. This approach is also extended to find the optimum solution for linear inequalities such as those arising in interval linear programming probloms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photopolymerization of methyl,ethyl,butyl, and hexyl methacrylates in solution was studied. The effect of initial initiator and monomer concentrations on the time evolution of polymer concentration (M) over bar (n) and PDI was examined. The reversible chain addition and beta-scission, and primary radical termination steps were included in the mechanism along with the classical steps. The rate equations were derived using continuous distribution kinetics and solved numerically to fit the experimental data. The regressed rate coefficients compared well with the literature data. The model predicted the instantaneous increase in (M) over bar (n) and PDI to steady state values. The rate coefficients exhibited a linear increase with the size of alkyl chain of the alkyl methacrylates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear suboptimal guidance scheme is developed for the reentry phase of the reusable launch vehicles. A recently developed methodology, named as model predictive static programming (MPSP), is implemented which combines the philosophies of nonlinear model predictive control theory and approximate dynamic programming. This technique provides a finite time nonlinear suboptimal guidance law which leads to a rapid solution of the guidance history update. It does not have to suffer from computational difficulties and can be implemented online. The system dynamics is propagated through the flight corridor to the end of the reentry phase considering energy as independent variable and angle of attack as the active control variable. All the terminal constraints are satisfied. Among the path constraints, the normal load is found to be very constrictive. Hence, an extra effort has been made to keep the normal load within a specified limit and monitoring its sensitivity to the perturbation.