129 resultados para Contact Area.
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper describes the dielectric behavior of an insulator-conductor composite, namely, the wax-graphite composite. The variation of specific capacitance of these composites with parameters such as volume fraction and grain size of the conducting particles and temperature has been studied. These observed variations have been explained using the same model [C. Rajagopal and M. Satyam, J. Appl. Phys. 49, 5536 (1978)] which explains electrical conduction in composites. The specific capacitance of these materials appears to be governed by the contact capacitance between the conducting particles and the number of contacts each particle has with its neighbors. The variation of specific capacitance with temperature is attributed to the change in contact area.
Resumo:
The variation of electrical resistivity of an insulator-conductor composite, namely, wax-graphite composite, with parameters such as volume fraction, grain size, and temperature has been studied. A model is proposed to explain the observed variations, which assumes that the texture of the composite consists of insulator granules coated with conducting particles. The resistivity of these materials is controlled mainly by the contact resistance between the conducting particles and the number of contacts each particle has with its neighbors. The variation of resistivity with temperature has also been explained with the help of this model and it is attributed to the change in contact area. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
The recA locus of pathogenic mycobacteria differs from that of nonpathogenic species because it contains large intervening sequences nested in the RecA homology region that are excised by an unusual protein-splicing reaction. In vivo assays indicated that Mycobacterium tuberculosis recA partially complemented Escherichia coli recA mutants for recombination and mutagenesis. Further, splicing of the 85 kDa precursor to 38 kDa MtRecA protein was necessary for the display of its activity, in vivo. To gain insights into the molecular basis for partial and lack of complementation by MtRecA and 85 kDa proteins, respectively, we purified both of them to homogeneity. MtRecA protein, but not the 85 kDa form, bound stoichiometrically to single-stranded DNA in the presence of ATP. MtRecA protein was cross-linked to 8-azidoadenosine 5'-triphosphate with reduced efficiency, and kinetic analysis of ATPase activity suggested that it is due to decreased affinity for ATP. In contrast, the 85 kDa form was unable to bind ATP, in the presence or absence of ssDNA and, consequently, was entirely devoid of ATPase activity. Molecular modeling studies suggested that the decreased affinity of MtRecA protein for ATP and the reduced efficiency of its hydrolysis might be due to the widening of the cleft which alters the hydrogen bonds and the contact area between the enzyme and the substrate and changes in the disposition of the amino acid residues around the magnesium ion and the gamma-phosphate. The formation of joint molecules promoted by MtRecA protein was stimulated by SSB when the former was added first. The probability of an association between the lack and partial levels of biological activity of RecA protein(s) to that of illegitimate recombination in pathogenic mycobacteria is considered.
Resumo:
Wear tests were done in a pin-on-disc machine by sliding MoSi2 pins against hard-steel discs in a normal load range of 5-140 N and a speed of 0.5 m/s under nominally dry conditions in the ambient. The specific wear rate of the pin undergoes two transitions: severe to mild at low load and mild to severe at high load. The mild-wear domain is distinguished by the formation of a protective mechanically mixed layer of steel and its oxides, transferred from the counterface in particulate form. Increasing the hardness by densification and TiB2 reinforcement lowers the specific wear rate and expands the mild-wear load domain. However, even when the volume wear rate is normalised with respect to the real contact area (load/hardness) the non-dimensional wear factor is still seen to decrease with densification and reinforcement. This indicates that fracture toughness may also play an important role in determining the wear-resistance of these materials. The surface coverage on the pin by the mechanically mixed layer increases with densification and reinforcement.
Resumo:
This paper describes the dielectric behavior of an insulator‐conductor composite, namely, the wax‐graphite composite. The variation of specific capacitance of these composites with parameters such as volume fraction and grain size of the conducting particles and temperature has been studied. These observed variations have been explained using the same model [C. Rajagopal and M. Satyam, J. Appl. Phys. 49, 5536 (1978)] which explains electrical conduction in composites. The specific capacitance of these materials appears to be governed by the contact capacitance between the conducting particles and the number of contacts each particle has with its neighbors. The variation of specific capacitance with temperature is attributed to the change in contact area.
Resumo:
Nano-indentation is a technique used to measure various mechanical properties like hardness, Young's modulus and the adherence of thin films and surface layers. It can be used as a quality control tool for various surface modification techniques like ion-implantation, film deposition processes etc. It is important to characterise the increasing scatter in the data measured at lower penetration depths observed in the nano-indentation, for the technique to be effectively applied. Surface roughness is one of the parameters contributing for the scatter. This paper is aimed at quantifying the nature and the amount of scatter that will be introduced in the measurement due to the roughness of the surface on which the indentation is carried out. For this the surface is simulated using the Weierstrass-Mandelbrot function which gives a self-affine fractal. The contact area of this surface with a conical indenter with a spherical cap at the tip is measured numerically. The indentation process is simulated using the spherical cavity model. This eliminates the indentation size effect observed at the micron and sub-micron scales. It has been observed that there exists a definite penetration depth in relation to the surface roughness beyond which the scatter is reduced such that reliable data could be obtained.
Resumo:
This study investigates the free convection and plumes dynamics over horizontal surfaces with parallel V-grooves. The convection is studied in a tank of water with the bottom surface being a smooth or grooved surface and the top of the water surface exposed to ambient. Two groove heights were used-10 mm and 3 mm-and the experiment was done with two values of aspect ratio-2.9 and 1.8 (aspect ratio is the width of the fluid layer/height of fluid layer). Heat flux at the bottom surface was from electrical heating. Beyond a certain critical temperature difference, enhanced heat transfer is obtained on the grooved surface compared to a smooth surface. Nusselt numbers are evaluated for both smooth and grooved surfaces and correlated using modified Rayleigh numbers. Visualization shows that the enhanced heat transport in the rough cavities cannot be ascribed to the increase in the contact area; rather, it must be the local dynamics of the thermal boundary layer.
Resumo:
The present paper analyzes the effects of plumes for heat transfer enhancement at solid-liquid interface taking both smooth and grooved surfaces. The experimental setup consists of a tank of dimensions 265 x 265 x 300 (height) containing water. The bottom surface was heated and free surface of the water was left open to the ambient. In the experiments, the bottom plate had either a smooth surface or a grooved surface. We used 90 V-grooved rough surfaces with two groove heights, 10mm and 3mm. The experiment was done with water layer depths of 90mm and 140mm, corresponding to values of aspect ratio(AR) equal to 2.9 and 1.8 respectively. Thymol blue, a pH sensitive dye, was used to visualize the flow near the heated plate. The measured heat transfer coefficients over the grooved surfaces were higher compared that over the smooth surface. The enhanced heat transport in the rough cavities cannot be ascribed to the increase in the contact area, rather it must be the local dynamics of the thermal boundary layer that changes the heat transport over the rough surface.
Resumo:
Bearing area analysis has been used to study the real area of contact and compliance of rough turned steel cylinders in compression. Calculations show that the elastic real area of contact is very small compared to the plastic real area of contact, and that local compliance due to flattening of asperity tips is a small proportion of the total compliance obtained from experiments. The fact that increased load brings more and more new asperities under load rather than enlarging the contact spots leads to a rather simple load-compliance relation for a rough cylinder, viz., W' = Nh · K1δn, where W0 = K1δn defines the load-compliance relation of the individual asperities, and Nh represents the number of asperities bearing the load.
Resumo:
Bearing area analysis has been used to study the real area of contact and compliance of rough turned steel cylinders in compression. Calculations show that the elastic real area of contact is very small compared to the plastic real area of contact, and that local compliance due to flattening of asperity tips is a small proportion of the total compliance obtained from experiments. The fact that increased load brings more and more new asperities under load rather than enlarging the contact spots leads to a rather simple load-compliance relation for a rough cylinder, viz., W' = Nh · K1δn, where W0 = K1δn defines the load-compliance relation of the individual asperities, and Nh represents the number of asperities bearing the load.
Resumo:
Biogeochemical and hydrological cycles are currently studied on a small experimental forested watershed (4.5 km(2)) in the semi-humid South India. This paper presents one of the first data referring to the distribution and dynamics of a widespread red soil (Ferralsols and Chromic Luvisols) and black soil (Vertisols and Vertic intergrades) cover, and its possible relationship with the recent development of the erosion process. The soil map was established from the observation of isolated soil profiles and toposequences, and surveys of soil electromagnetic conductivity (EM31, Geonics Ltd), lithology and vegetation. The distribution of the different parts of the soil cover in relation to each other was used to establish the dynamics and chronological order of formation. Results indicate that both topography and lithology (gneiss and amphibolite) have influenced the distribution of the soils. At the downslope, the following parts of the soil covers were distinguished: i) red soil system, ii) black soil system, iii) bleached horizon at the top of the black soil and iv) bleached sandy saprolite at the base of the black soil. The red soil is currently transforming into black soil and the transformation front is moving upslope. In the bottom part of the slope, the chronology appears to be the following: black soil > bleached horizon at the top of the black soil > streambed > bleached horizon below the black soil. It appears that the development of the drainage network is a recent process, which was guided by the presence of thin black soil with a vertic horizon less than 2 in deep. Three distinctive types of erosional landforms have been identified: 1. rotational slips (Type 1); 2. a seepage erosion (Type 2) at the top of the black soil profile; 3. A combination of earthflow and sliding in the non-cohesive saprolite of the gneiss occurs at midslope (Type 3). Types 1 and 2 erosion are mainly occurring downslope and are always located at the intersection between the streambed and the red soil-black soil contact. Neutron probe monitoring, along an area vulnerable to erosion types 1 and 2, indicates that rotational slips are caused by a temporary watertable at the base of the black soil and within the sandy bleached saprolite, which behaves as a plane of weakness. The watertable is induced by the ephemeral watercourse. Erosion type 2 is caused by seepage of a perched watertable, which occurs after swelling and closing of the cracks of the vertic clay horizon and within a light textured and bleached horizon at the top of black soil. Type 3 erosion is not related to the red soil-black soil system but is caused by the seasonal seepage of saturated throughflow in the sandy saprolite of the gneiss occurring at midslope. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Ultrathin Au nanowires (similar to 2 nm diameter) are interesting from a fundamental point of view to study structure and electronic transport and also hold promise in the field of nanoelectronics, particularly for sensing applications. Device fabrication by direct growth on various substrates has been useful in demonstrating some of the potential applications. However, the realization of practical devices requires device fabrication strategies that are fast, inexpensive, and efficient. Herein, we demonstrate directed assembly of ultrathin Au nanowires over large areas across electrodes using ac dielectrophoresis with a mechanistic understanding of the process. On the basis of the voltage and frequency, the wires either align in between or across the contact pads. We exploit this assembly to produce an array of contacting wires for statistical estimation of electrical transport with important implications for future nanoelectronic/sensor applications.
Resumo:
1 Species-accumulation curves for woody plants were calculated in three tropical forests, based on fully mapped 50-ha plots in wet, old-growth forest in Peninsular Malaysia, in moist, old-growth forest in central Panama, and in dry, previously logged forest in southern India. A total of 610 000 stems were identified to species and mapped to < Im accuracy. Mean species number and stem number were calculated in quadrats as small as 5 m x 5 m to as large as 1000 m x 500 m, for a variety of stem sizes above 10 mm in diameter. Species-area curves were generated by plotting species number as a function of quadrat size; species-individual curves were generated from the same data, but using stem number as the independent variable rather than area. 2 Species-area curves had different forms for stems of different diameters, but species-individual curves were nearly independent of diameter class. With < 10(4) stems, species-individual curves were concave downward on log-log plots, with curves from different forests diverging, but beyond about 104 stems, the log-log curves became nearly linear, with all three sites having a similar slope. This indicates an asymptotic difference in richness between forests: the Malaysian site had 2.7 times as many species as Panama, which in turn was 3.3 times as rich as India. 3 Other details of the species-accumulation relationship were remarkably similar between the three sites. Rectangular quadrats had 5-27% more species than square quadrats of the same area, with longer and narrower quadrats increasingly diverse. Random samples of stems drawn from the entire 50 ha had 10-30% more species than square quadrats with the same number of stems. At both Pasoh and BCI, but not Mudumalai. species richness was slightly higher among intermediate-sized stems (50-100mm in diameter) than in either smaller or larger sizes, These patterns reflect aggregated distributions of individual species, plus weak density-dependent forces that tend to smooth the species abundance distribution and 'loosen' aggregations as stems grow. 4 The results provide support for the view that within each tree community, many species have their abundance and distribution guided more by random drift than deterministic interactions. The drift model predicts that the species-accumulation curve will have a declining slope on a log-log plot, reaching a slope of O.1 in about 50 ha. No other model of community structure can make such a precise prediction. 5 The results demonstrate that diversity studies based on different stem diameters can be compared by sampling identical numbers of stems. Moreover, they indicate that stem counts < 1000 in tropical forests will underestimate the percentage difference in species richness between two diverse sites. Fortunately, standard diversity indices (Fisher's sc, Shannon-Wiener) captured diversity differences in small stem samples more effectively than raw species richness, but both were sample size dependent. Two nonparametric richness estimators (Chao. jackknife) performed poorly, greatly underestimating true species richness.
Resumo:
Nanoporous structures with high active surface areas are critical for a variety of applications. Here, we present a general templateless strategy to produce such porous structures by controlled aggregation of nanostructured subunits and apply the principles for synthesizing nanoporous Pt for electrocatalytic oxidation of methanol. The nature of the aggregate produced is controlled by tuning the electrostatic interaction between surfactant-free nanoparticles in the solution phase. When the repulsive force between the particles is very large, the particles are stabilized in the solution while instantaneous aggregation leading to fractal-like structures results when the repulsive force is very low. Controlling the repulsive interaction to an optimum, intermediate value results in the formation of compact structures with very large surface areas. In the case of Pt, nanoporous clusters with an extremely high specific surface area (39 m(2)/g) and high activity for methanol oxidation have been produced. Preliminary investigations indicate that the method is general and can be easily extended to produce nanoporous structures of many inorganic materials.
Resumo:
Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.