30 resultados para Constellations.

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constellation Constrained (CC) capacity regions of two-user Single-Input Single-Output (SISO) Gaussian Multiple Access Channels (GMAC) are computed for several Non-Orthogonal Multiple Access schemes (NO-MA) and Orthogonal Multiple Access schemes (O-MA). For NO-MA schemes, a metric is proposed to compute the angle(s) of rotation between the input constellations such that the CC capacity regions are maximally enlarged. Further, code pairs based on Trellis Coded Modulation (TCM) are designed with PSK constellation pairs and PAM constellation pairs such that any rate pair within the CC capacity region can be approached. Such a NO-MA scheme which employs CC capacity approaching trellis codes is referred to as Trellis Coded Multiple Access (TCMA). Then, CC capacity regions of O-MA schemes such as Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) are also computed and it is shown that, unlike the Gaussian distributed continuous constellations case, the CC capacity regions with FDMA are strictly contained inside the CC capacity regions with TCMA. Hence, for finite constellations, a NO-MA scheme such as TCMA is better than FDMA and TDMA which makes NO-MA schemes worth pursuing in practice for two-user GMAC. Then, the idea of introducing rotations between the input constellations is used to construct Space-Time Block Code (STBC) pairs for two-user Multiple-Input Single-Output (MISO) fading MAC. The proposed STBCs are shown to have reduced Maximum Likelihood (ML) decoding complexity and information-losslessness property. Finally, STBC pairs with reduced sphere decoding complexity are proposed for two-user Multiple-Input Multiple-Output (MIMO) fading MAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein an appropriate angle of rotation between the constellations of the two users is shown to enlarge the CC capacity region. We refer to such a scheme as the Constellation Rotation (CR) scheme. In this paper, we propose a novel scheme called the Constellation Power Allocation (CPA) scheme, wherein the instantaneous transmit power of the two users are varied by maintaining their average power constraints. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced decoding complexity for QAM constellations. We study the robustness of the CPA scheme for random phase offsets in the channel and unequal average power constraints for the two users. With random phase offsets in the channel, we show that the CC sum capacity offered by the CPA scheme is more than the CR scheme at high SNR values. With unequal average power constraints, we show that the CPA scheme provides maximum gain when the power levels are close, and the advantage diminishes with the increase in the power difference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies a pilot-assisted physical layer data fusion technique known as Distributed Co-Phasing (DCP). In this two-phase scheme, the sensors first estimate the channel to the fusion center (FC) using pilots sent by the latter; and then they simultaneously transmit their common data by pre-rotating them by the estimated channel phase, thereby achieving physical layer data fusion. First, by analyzing the symmetric mutual information of the system, it is shown that the use of higher order constellations (HOC) can improve the throughput of DCP compared to the binary signaling considered heretofore. Using an HOC in the DCP setting requires the estimation of the composite DCP channel at the FC for data decoding. To this end, two blind algorithms are proposed: 1) power method, and 2) modified K-means algorithm. The latter algorithm is shown to be computationally efficient and converges significantly faster than the conventional K-means algorithm. Analytical expressions for the probability of error are derived, and it is found that even at moderate to low SNRs, the modified K-means algorithm achieves a probability of error comparable to that achievable with a perfect channel estimate at the FC, while requiring no pilot symbols to be transmitted from the sensor nodes. Also, the problem of signal corruption due to imperfect DCP is investigated, and constellation shaping to minimize the probability of signal corruption is proposed and analyzed. The analysis is validated, and the promising performance of DCP for energy-efficient physical layer data fusion is illustrated, using Monte Carlo simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average Power Ratio (PAPR) and avoid the problem of switching off antennas. But square CODs for 2(a) antennas with a + 1. complex variables, with no zero entries were discovered only for a <= 3 and if a + 1 = 2(k), for k >= 4. In this paper, a method of obtaining no zero entry (NZE) square designs, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. Then, starting from a so constructed NZE CPOD for n = 2(a+1) antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas, successively. Compared to the CODs, CPODs have slightly more ML decoding complexity for rectangular QAM constellations and the same ML decoding complexity for other complex constellations. Using the recently constructed NZE CODs for 8 antennas our method leads to NZE CPODs for 16 antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulation results show that bit error performance of our codes is same as that of the CODs under average power constraint and superior to CODs under peak power constraint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average power ratio (PAPR) and avoid the problem of turning off antennas. But CODs for 2(a) antennas with a + 1 complex variables, with no zero entries are not known in the literature for a >= 4. In this paper, a method of obtaining no zero entry (NZE) codes, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE CPODs for 16 antennas. Moreover, starting from certain NZE CPODs for n antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulations results show that bit error performance of our codes under average power constraint is same as that of the CODs and superior to CODs under peak power constraint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zero entries in complex orthogonal designs (CODs) impede their practical implementation. In this paper, a method of obtaining a no zero entry (NZE) code for 2(k+1) antennas whenever a NZE code exists for 2(k) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE codes for 16 antennas. Simulation results show good performance of our new codes compared to the well known constructions for 16 and 32 antennas under peak power constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Space-time block codes (STBCs) that are single-symbol decodable (SSD) in a co-located multiple antenna setting need not be SSD in a distributed cooperative communication setting. A relay network with N relays and a single source-destination pair is called a partially-coherent relay channel (PCRC) if the destination has perfect channel state information (CSI) of an the channels and the relays have only the phase information of the source-to-relay channels. In our earlier work, we had derived a set of necessary and sufficient conditions for a distributed STBC (DSTBC) to be SSD for a PCRC. Using these conditions, in this paper we show that the possibility of channel phase compensation operation at the relay nodes using partial CSI at the relays increases the possible rate of SSD DSTBCs from 2/N when the relays do not have CSI to 1/2, which is independent of N. We also show that when a DSTBC is SSD for a PCRC, then arbitrary coordinate interleaving of the in-phase and quadrature-phase components of the variables does not disturb its SSD property. Using this property we are able to construct codes that are SSD and have higher rate than 2/N but giving full diversity only for signal constellations satisfying certain conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of constructing space-time (ST) block codes over a fixed, desired signal constellation is considered. In this situation, there is a tradeoff between the transmission rate as measured in constellation symbols per channel use and the transmit diversity gain achieved by the code. The transmit diversity is a measure of the rate of polynomial decay of pairwise error probability of the code with increase in the signal-to-noise ratio (SNR). In the setting of a quasi-static channel model, let n(t) denote the number of transmit antennas and T the block interval. For any n(t) <= T, a unified construction of (n(t) x T) ST codes is provided here, for a class of signal constellations that includes the familiar pulse-amplitude (PAM), quadrature-amplitude (QAM), and 2(K)-ary phase-shift-keying (PSK) modulations as special cases. The construction is optimal as measured by the rate-diversity tradeoff and can achieve any given integer point on the rate-diversity tradeoff curve. An estimate of the coding gain realized is given. Other results presented here include i) an extension of the optimal unified construction to the multiple fading block case, ii) a version of the optimal unified construction in which the underlying binary block codes are replaced by trellis codes, iii) the providing of a linear dispersion form for the underlying binary block codes, iv) a Gray-mapped version of the unified construction, and v) a generalization of construction of the S-ary case corresponding to constellations of size S-K. Items ii) and iii) are aimed at simplifying the decoding of this class of ST codes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed Space-Time Block Codes (DSTBCs) from Complex Orthogonal Designs (CODs) (both square and non-square CODs other than the Alamouti design) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using the amplify and forward protocol. For such a network, a new class of high rate, training-symbol embedded (TSE) SSD DSTBCs are proposed from TSE-CODs. The constructed codes include the training symbols within the structure of the code which is shown to be the key point to obtain high rate along with the SSD property. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations. Non-square TSE-CODs are shown to provide better rates (in symbols per channel use) compared to the known SSD DSTBCs for relay networks when the number of relays is less than 10. Importantly, the proposed DSTBCs do not contain zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on and off transitions within every codeword use. Hence, the proposed DSTBCs eliminate the antenna switching problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance of space-time block codes can be improved using the coordinate interleaving of the input symbols from rotated M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) constellations. This paper is on the performance analysis of coordinate-interleaved space-time codes, which are a subset of single-symbol maximum likelihood decodable linear space-time block codes, for wireless multiple antenna terminals. The analytical and simulation results show that full diversity is achievable. Using the equivalent single-input single-output model, simple expressions for the average bit error rates are derived over flat uncorrelated Rayleigh fading channels. Optimum rotation angles are found by finding the minimum of the average bit error rate curves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multipleoutput (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation.Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 × 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations,compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for nonrectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed space-time block codes (DSTBCs) from complex orthogonal designs (CODs) (both square and nonsquare), coordinate interleaved orthogonal designs (CIODs), and Clifford unitary weight designs (CUWDs) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using amplify and forward protocol. For such networks, in this paper, three new classes of high rate, training-symbol embedded (TSE) SSD DSTBCs are constructed: TSE-CODs, TSE-CIODs, and TSE-CUWDs. The proposed codes include the training symbols inside the structure of the code which is shown to be the key point to obtain the SSD property along with the channel estimation capability. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations and the constellations for which TSE-CIODs and TSE-CUWDs offer full-diversity are characterized. It is shown that DSTBCs from nonsquare TSE-CODs provide better rates (in symbols per channel use) when compared to the known SSD DSTBCs for relay networks. Important from the practical point of view, the proposed DSTBCs do not contain any zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on/off transitions within every codeword, and, thus, avoid the antenna switching problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.