82 resultados para Consommation de poisson
em Indian Institute of Science - Bangalore - Índia
Resumo:
Analytical models of IEEE 802.11-based WLANs are invariably based on approximations, such as the well-known mean-field approximations proposed by Bianchi for saturated nodes. In this paper, we provide a new approach for modeling the situation when the nodes are not saturated. We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the CSMA/CA protocol as standardized in the IEEE 802.11 DCF. The approximation is that, when n of the M queues are non-empty, the attempt probability of the n non-empty nodes is given by the long-term attempt probability of n saturated nodes as provided by Bianchi's model. This yields a coupled queue system. When packets arrive to the M queues according to independent Poisson processes, we provide an exact model for the coupled queue system with SDAR service. The main contribution of this paper is to provide an analysis of the coupled queue process by studying a lower dimensional process and by introducing a certain conditional independence approximation. We show that the numerical results obtained from our finite buffer analysis are in excellent agreement with the corresponding results obtained from ns-2 simulations. We replace the CSMA/CA protocol as implemented in the ns-2 simulator with the SDAR service model to show that the SDAR approximation provides an accurate model for the CSMA/CA protocol. We also report the simulation speed-ups thus obtained by our model-based simulation.
Resumo:
Previous techniques used for solving the 1-D Poisson equation ( PE) rigorously for long-channel asymmetric and independent double-gate (IDG) transistors result in potential models that involve multiple intercoupled implicit equations. As these equations need to be solved self-consistently, such potential models are clearly inefficient for compact modeling. This paper reports a different rigorous technique for solving the same PE by which one can obtain the potential profile of a generalized IDG transistor that involves a single implicit equation. The proposed Poisson solution is shown to be computationally more efficient for circuit simulation than the previous solutions.
Resumo:
By using the bender and extender elements tests, together with measurements of the travel times of shear (S) and primary (P) waves, the variation of Poisson ratio (nu) was determined for dry sands with respect to changes in relative densities and effective confining pressures (sigma(3)). The tests were performed for three different ranges of particle sizes. The magnitude of the Poisson ratio decreases invariably with an increase in both the relative density and the effective confining pressure. The effect of the confining pressure on the Poisson ratio was found to become relatively more significant for fine-grained sand as compared with the coarse-grained sand. For a given material, at a particular value of sigma(3), the magnitude of the Poisson ratio decreases, almost in a linear fashion, with an increase in the value of maximum shear modulus (G(max)). The two widely used correlations in literature, providing the relationships among G(max), void ratio (e) and effective confining pressure (sigma(3)), applicable for angular granular materials, were found to compare reasonably well with the present experimental data for the fine- and medium-grained sands. However, for the coarse-grained sand, these correlations tend to overestimate the values of G(max).
Resumo:
Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.
Resumo:
We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol as standardized in the IEEE 802.11 Distributed Coordination Function (DCF). The approximation is that, when n of the M queues are non-empty, the (transmission) attempt probability of each of the n non-empty nodes is given by the long-term (transmission) attempt probability of n saturated nodes. With the arrival of packets into the M queues according to independent Poisson processes, the SDAR approximation reduces a single cell with non-saturated nodes to a Markovian coupled queueing system. We provide a sufficient condition under which the joint queue length Markov chain is positive recurrent. For the symmetric case of equal arrival rates and finite and equal buffers, we develop an iterative method which leads to accurate predictions for important performance measures such as collision probability, throughput and mean packet delay. We replace the MAC layer with the SDAR model of contention by modifying the NS-2 source code pertaining to the MAC layer, keeping all other layers unchanged. By this model-based simulation technique at the MAC layer, we achieve speed-ups (w.r.t. MAC layer operations) up to 5.4. Through extensive model-based simulations and numerical results, we show that the SDAR model is an accurate model for the DCF MAC protocol in single cells. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a detailed investigation of the erects of piezoelectricity, spontaneous polarization and charge density on the electronic states and the quasi-Fermi level energy in wurtzite-type semiconductor heterojunctions. This has required a full solution to the coupled Schrodinger-Poisson-Navier model, as a generalization of earlier work on the Schrodinger-Poisson problem. Finite-element-based simulations have been performed on a A1N/GaN quantum well by using both one-step calculation as well as the self-consistent iterative scheme. Results have been provided for field distributions corresponding to cases with zero-displacement boundary conditions and also stress-free boundary conditions. It has been further demonstrated by using four case study examples that a complete self-consistent coupling of electromechanical fields is essential to accurately capture the electromechanical fields and electronic wavefunctions. We have demonstrated that electronic energies can change up to approximately 0.5 eV when comparing partial and complete coupling of electromechanical fields. Similarly, wavefunctions are significantly altered when following a self-consistent procedure as opposed to the partial-coupling case usually considered in literature. Hence, a complete self-consistent procedure is necessary when addressing problems requiring more accurate results on optoelectronic properties of low-dimensional nanostructures compared to those obtainable with conventional methodologies.
Resumo:
We propose a new set of input voltage equations (IVEs) for independent double-gate MOSFET by solving the governing bipolar Poisson equation (PE) rigorously. The proposed IVEs, which involve the Legendre's incomplete elliptic integral of the first kind and Jacobian elliptic functions and are valid from accumulation to inversion regimes, are shown to have good agreement with the numerical solution of the same PE for all bias conditions.
Resumo:
Bilateral filters perform edge-preserving smoothing and are widely used for image denoising. The denoising performance is sensitive to the choice of the bilateral filter parameters. We propose an optimal parameter selection for bilateral filtering of images corrupted with Poisson noise. We employ the Poisson's Unbiased Risk Estimate (PURE), which is an unbiased estimate of the Mean Squared Error (MSE). It does not require a priori knowledge of the ground truth and is useful in practical scenarios where there is no access to the original image. Experimental results show that quality of denoising obtained with PURE-optimal bilateral filters is almost indistinguishable with that of the Oracle-MSE-optimal bilateral filters.
Resumo:
We propose a Monte Carlo filter for recursive estimation of diffusive processes that modulate the instantaneous rates of Poisson measurements. A key aspect is the additive update, through a gain-like correction term, empirically approximated from the innovation integral in the time-discretized Kushner-Stratonovich equation. The additive filter-update scheme eliminates the problem of particle collapse encountered in many conventional particle filters. Through a few numerical demonstrations, the versatility of the proposed filter is brought forth.
Resumo:
A new physically based classical continuous potential distribution model, particularly considering the channel center, is proposed for a short-channel undoped body symmetrical double-gate transistor. It involves a novel technique for solving the 2-D nonlinear Poisson's equation in a rectangular coordinate system, which makes the model valid from weak to strong inversion regimes and from the channel center to the surface. We demonstrated, using the proposed model, that the channel potential versus gate voltage characteristics for the devices having equal channel lengths but different thicknesses pass through a single common point (termed ``crossover point''). Based on the potential model, a new compact model for the subthreshold swing is formulated. It is shown that for the devices having very high short-channel effects (SCE), the effective subthreshold slope factor is mainly dictated by the potential close to the channel center rather than the surface. SCEs and drain-induced barrier lowering are also assessed using the proposed model and validated against a professional numerical device simulator.
Resumo:
An experimental study to ascertain the ductile-to-brittle transition (DBT) in a bulk metallic glass (BMG) was conducted. Results of the impact toughness tests conducted at various temperatures on as-cast and structurally relaxed Zr-based BMG show a sharp DBT. The DBT temperature was found to be sensitive to the free-volume content in the alloy. Possible factors that result in the DBT were critically examined. It was found that the postulate of a critical free volume required for the amorphous alloy to exhibit good toughness cannot rationalize the experimental trends. Likewise, the Poisson's ratio-toughness correlations, which suggest a critical Poisson's ratio above which all glasses are tough, were found not to hold good. Viscoplasticity theories, developed using the concept of shear transformation zones and which describe the temperature and strain rate dependence of the crack-tip plasticity in BMGs, appear to be capable of capturing the essence of the experiments. Our results highlight the need for a more generalized theory to understand the origins of toughness in BMGs.
Resumo:
The deformation and fracture response of a bulk metallic glass (BMG) post-annealing above the glass transition temperature is examined. The toughness of the glass-matrix composite exhibits a sharp transition beyond a critical volume fraction of crystallization to values as low as that of brittle silicate glass. Instrumented indentation tests supplemented by impact tests were used to study this ductile to brittle transition exhibited by the partially crystallized samples. Indentation on the anneal-embrittled specimens shows lateral cracks in addition to cracks along the corners. The applicability of the Poisson's ratio-toughness correlation with respect to partially crystallized samples is also investigated.
Resumo:
Elastic properties of lead phosphomolybdate [PbO-1bMoO3-1bP2O5] glasses have been investigated using ultrasonic velocity measurements at 10MHz. The composition dependence of elastic moduli, Poisson's ratio and the Debye temperature are found to be consistent with a structural model proposed earlier. According to this model lead acts both as a network former and as a network modifier in different composition regimes. It is suggested that the incorporation of lead into the network is accompanied by the conversion of three-connected [Image ] tetrahedra into four-connected Image tetrahedra in the network. lead; phosphorus; molybdenum
Natural frequencies of rectangular orthotropic plates with a pair of parallel edges simply supported
Resumo:
Solutions of the exact characteristic equations for the title problem derived earlier by an extension of Bolotin's asymptotic method are considered. These solutions, which correspond to flexural modes with frequency factor, R, greater than unity, are expressed in convenient forms for all combinations of clamped, simply supported and free conditions at the remaining pair of parallel edges. As in the case of uniform beams, the eigenvalues in the CC case are found to be equal to those of elastic modes in the FF case provided that the Kirchoff's shear condition at a free edge is replaced by the condition. The flexural modes with frequency factor less than unity are also investigated in detail by introducing a suitable modification in the procedure. When Poisson's ratios are not zero, it is shown that the frequency factor corresponding to the first symmetric mode in the free-free case is less than unity for all values of side ratio and rigidity ratios. In the case of one edge clamped and the other free it is found that modes with frequency factor less than unity exist for certain dimensions of the plate—a fact hitherto unrecognized in the literature.