2 resultados para Connecticut. Governor (1812-1817 : Smith)

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The end of the Palaeozoic is marked by two mass-extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative C-13 anomalies, sedimentological signatures such as claystone breccias, and the approximate contemporaneous emplacement of large igneous provinces, many authors have sought a common causal mechanism. Here, a new high-resolution continental record of the Capitanian event from Portal Mountain, Antarctica, is compared with previously published Changhsingian records of geochemical signatures of weathering intensity and palaeoclimatic change. Geochemical means of discriminating sedimentary provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance for the Portal Mountain sediments and associated palaeosols, so changes spanning the Capitanian extinction represent changes in weathering intensity rather than sediment source. Proxies for weathering intensity chemical index of alteration, W and rare earth element accumulation all decline across the Capitanian extinction event at Portal Mountain, which is in contrast to the increased weathering recorded globally at the Late Permian extinction. Furthermore, palaeoclimatic proxies are consistent with unchanging or cooler climatic conditions throughout the Capitanian event, which contrasts with Changhsingian records that all indicate a significant syn-extinction and post-extinction series of greenhouse warming events. Although both the Capitanian and Changhsingian event records indicate significant redox shifts, palaeosol geochemistry of the Changhsingian event indicates more reducing conditions, whereas the new Capitanian record of reduced trace metal abundances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken together, the differences in weathering intensity, redox and the lack of evidence for significant climatic change in the new record suggest that the Capitanian mass extinction was not triggered by dyke injection of coal-beds, as in the Changhsingian extinction, and may instead have been triggered directly by the Emeishan large igneous province or by the interaction of Emeishan basalts with platform carbonates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The colubrid snake Chrysopelea taprobanica Smith, 1943 was described from a holotype from Kanthali (= Kantalai) and paratypes from Kurunegala, both localities in Sri Lanka (formerly Ceylon) (Smith 1943). Since its description, literature pertaining to Sri Lankan snake fauna considered this taxon to be endemic to the island (Taylor 1950, Deraniyagala 1955, de Silva 1980, de Silva 1990, Somaweera 2004, Somaweera 2006, de Silva 2009, Pyron et al. 2013). In addition, earlier efforts on the Indian peninsula (e.g. Das 1994, 1997, Das 2003, Whitaker & Captain 2004, Aengals et al. 2012) and global data compilations (e.g. Wallach et al. 2014, Uetz & Hošek 2015) did not identify any record from mainland India until Guptha et al. (2015) recorded a specimen (voucher BLT 076 housed at Bio-Lab of Seshachalam Hills, Tirupathi, India) in the dry deciduous forest of Chamala, Seshachalam Biosphere Reserve in Andhra Pradesh, India in November 2013. Guptha et al. (2015) further mentioned an individual previously photographed in 2000 at Rishi Valley, Andhra Pradesh, but with no voucher specimen collected. Guptha’s record, assumed to be the first confirmed record of C. taprobanica in India, is noteworthy as it results in a large range extension, from northern Sri Lanka to eastern India with an Euclidean distance of over 400 km, as well as a change of status, i.e., species not endemic to Sri Lanka. However, at least three little-known previous records of this species from India evaded most literature and were overlooked by the researchers including ourselves.