3 resultados para Conflicts in the south of Brazil

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inbreeding patterns and coefficient of inbreeding (F) of 3,350 new-borns in Bangalore, Karnataka were determined. A total of 29.24% were born of consanguineous marriages, F = 0.02313. Inbreeding was most common among the Hindus: 23.56% of their marriages were uncle-niece, F for the group was 0.02670.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consanguineous marriages are strongly favoured in the state of Karnataka. Of 65492 marriages studied 33·07% were consanguineous, equivalent to a coefficient of inbreeding (F) of 0·0298. The twinning rate was low, 6·9 per thousand, whereas the secondary sex ratio, 0·5221, was higher than in comparable major human populations. Consanguinity exerted no significant effect on either parameter. The results also indicate that consanguinity is not associated with excess antenatal losses and suggest the possibility of enhanced selection against mutations at X chromosome loci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buoy and satellite data show pronounced subseasonal oscillations of sea surface temperature (SST) in the summertime Bay of Bengal. The SST oscillations are forced mainly by surface heat flux associated with the active break cycle of the south Asian summer monsoon. The input of freshwater (FW) from summer rain and rivers to the bay is large, but not much is known about subseasonal salinity variability. We use 2002-2007 observations from three Argo floats with 5 day repeat cycle to study the subseasonal response of temperature and salinity to surface heat and freshwater flux in the central Bay of Bengal. About 95% of Argo profiles show a shallow halocline, with substantial variability of mixed layer salinity. Estimates of surface heat and freshwater flux are based on daily satellite data sampled along the float trajectory. We find that intraseasonal variability of mixed layer temperature is mainly a response to net surface heat flux minus penetrative radiation during the summer monsoon season. In winter and spring, however, temperature variability appears to be mainly due to lateral advection rather than local heat flux. Variability of mixed layer freshwater content is generally independent of local surface flux (precipitation minus evaporation) in all seasons. There are occasions when intense monsoon rainfall leads to local freshening, but these are rare. Large fluctuations in FW appear to be due to advection, suggesting that freshwater from rivers and rain moves in eddies or filaments.