57 resultados para Concerti grossi, Arranged.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Recent advances in nanotechnology have paved ways to various techniques for designing and fabricating novel nanostructures incorporating noble metal nanoparticles, for a wide range of applications. The interaction of light with metal nanoparticles (NPs) can generate strongly localized electromagnetic fields (Localized Surface Plasmon Resonance, LSPR) at certain wavelengths of the incident beam. In assemblies or structures where the nanoparticles are placed in close proximity, the plasmons of individual metallic NPs can be strongly coupled to each other via Coulomb interactions. By arranging the metallic NPs in a chiral (e.g. helical) geometry, it is possible to induce collective excitations, which lead to differential optical response of the structures to right-and left circularly polarized light (e.g. Circular Dichroism - CD). Earlier reports in this field include novel techniques of synthesizing metallic nanoparticles on biological helical templates made from DNA, proteins etc. In the present work, we have developed new ways of fabricating chiral complexes made of metallic NPs, which demonstrate a very strong chiro-optical response in the visible region of the electromagnetic spectrum. Using DDA (Discrete Dipole Approximation) simulations, we theoretically studied the conditions responsible for large and broadband chiro-optical response. This system may be used for various applications, for example those related to polarization control of visible light, sensing of proteins and other chiral bio-molecules, and many more.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.
Resumo:
Learning automata arranged in a two-level hierarchy are considered. The automata operate in a stationary random environment and update their action probabilities according to the linear-reward- -penalty algorithm at each level. Unlike some hierarchical systems previously proposed, no information transfer exists from one level to another, and yet the hierarchy possesses good convergence properties. Using weak-convergence concepts it is shown that for large time and small values of parameters in the algorithm, the evolution of the optimal path probability can be represented by a diffusion whose parameters can be computed explicitly.
Resumo:
Molecular dynamics (MD) simulations are reported for an anchored bilayer formed by the intercalation of cetyl trimethyl ammonium (CTA) and CH3(CH2)15N+(CH3) ions in a layered solid, CdPS3. The intercalated CTA ions are organized with the cationic headgroups tethered to the inorganic sheet and the hydrocarbon tails arranged as bilayers. Simulations were performed at three temperatures, 65, 180, and 298 K, using an isothermal−isobaric ensemble that was subsequently switched once macroscopic parameters had converged to a canonical isothermal−isochoric ensemble. The simulations are able to reproduce the experimental features of this system, including the formation of the bilayer and layer-to-layer separation distance. An analysis of the conformation of the chains showed that at all three temperatures a fraction of the alkyl chains retained a planar all-trans conformation, and that gauche bonds occurred as part of a “kink” (gauche+−trans−gauche−) sequence and not as isolated gauche bonds. Trans−gauche isomerization rates for the alkyl chains in the anchored bilayer are slower than those in lipid bilayers at the same temperature and show a progressive increase as the torsion numbers approach the tail. A two-dimensional periodic Voronoi tessellation analysis was performed to obtain the single-molecular area of an alkyl chain in the bilayer. The single-molecular area relaxation times are an order of magnitude longer than the trans−gauche isomerization times. The results indicate that the trans−gauche isomerization is associated with the creation and annihilation of a kink defect sequence. The results of the present MD simulation explain the apparent conflicting estimates of the gauche disorder in this system as obtained from infrared and 13C nuclear magnetic resonance measurements.
Resumo:
A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.
Resumo:
Observations were made on a nest of Ropalidia cyathiformis consisting of three combs. The number of eggs, larvae, pupae and adults were monitored at about 3-day intervals for a 2-month period. The behaviour of the adults was observed with special reference to the proportion of time spent on each of the three combs, the proportion of time spent away from the nest site and the frequencies of dominance interactions and egg laying. The adults moved freely between the three combs suggesting that all of them and all the three combs belonged to one nest. However, most of the adults preferred combs 2 and 3 over comb 1. Of the 10 animals chosen for a detailed analysis of behaviour, seven spent varying periods of time away from the nest site and oRen brought back food or building material. Five of the 10 animals laid at least one egg each but two adults monopolized most of the egg-laying. The animals showed a variety of dominance interactions on the basis of which they have been arranged in a dominance hierarchy. The dominant individuals laid most of the eggs and spent little or no time foraging, while the subordinate individuals spent more time foraging and laid few eggs or none. It is argued that R. cyathiformis is different from R. marginata, the only other Indian social wasp whose behaviour has been studied, in being at a more primitive stage of social organization.
Resumo:
C llH22 N 30 + . C2H302, orthorhombic, P2~2~2~, a = 5.511(2), b = 14.588(4), c = 21.109 (4)A, Z = 4. The structure has been solved using MULTAN and refined to R = 0.079 for 993 observed reflections. The fully extended lysine side chain in the molecule is staggered between the main-chain amino and carbonyl groups. The dipeptide molecules in the crystal structure are arranged in twofold helices centred on 21 screw axes. These helices are interconnected through interactions involving the acetate and the side-chain amino groups. Each acetate group bridges two adjacent side-chain amino groups, related by an a translation, giving rise to an infinitely long chain of alternating negatively charged carboxylate and positively charged amino groups.
Resumo:
C llH22 N 30 + . C2H302, orthorhombic, P2~2~2~, a = 5.511(2), b = 14.588(4), c = 21.109 (4)A, Z = 4. The structure has been solved using MULTAN and refined to R = 0.079 for 993 observed reflections. The fully extended lysine side chain in the molecule is staggered between the main-chain amino and carbonyl groups. The dipeptide molecules in the crystal structure are arranged in twofold helices centred on 21 screw axes. These helices are interconnected through interactions involving the acetate and the side-chain amino groups. Each acetate group bridges two adjacent side-chain amino groups, related by an a translation, giving rise to an infinitely long chain of alternating negatively charged carboxylate and positively charged amino groups.
Resumo:
Metallo tetraphenylporphyrins form I : I molecular complexes with 4,6-dinitrobenzofuroxan. The molecular association is described in terms of T-n. interaction with porphyrins functioning as donors. The association constants and thermodynamic parameters have been evaluated using optical absorption and 'H nmr spectral methods. Based on the binding constants, the donor ability of various metalloporphyrins can be arranged in the following order: Pd(I1) > Co(I1) > Cu(I1) > Ni(I1) - VO(1V) - 2H > Zn(l1). Electron paramagnetic resonance studies of the complexes reveal that the IT-complexation results in changes in the electronic structure of the central metal ions which are reflected in the changes in the M-N 5 bonding. The dipolar contribution to the acceptor proton chemical shifts in the CoTPP complex has been partitioned from ring current contributions using the shifts observed in the ZnTPP complex. The shifts, along with the line broadening ratios observed for the CoTPP complex, are used to arrive at the possible solution structures of the complexes.
Resumo:
The crystal structures of alkyl 2-deoxy-alpha-D-arabino-hexopyranosides, with the alkyl chain lengths from C-8 to C-18, are established by the single crystal X-ray structural determination. The even-alkyl chain length derivatives crystallized orthorhombic, with space group P2(1)2(1)2(1), whereas the odd-alkyl chain length derivatives crystallized monoclinic, with space group P2(1). The sugar moieties retained a C-4(1) chair conformation and the conformation of the alkyl chains was all-trans. The molecules formed a bilayer structure, in which alkyl chains were interdigitated.The hydrogen bonds, originating from the sugar moieties, were observed in adjacent layers and also within the same layer, resulting in the formation of infinite chains. The alkyl chains arranged parallel to each other and formed planar structures. The thermal properties of the alkyl 2-deoxy glucosides were analyzed further. It was observed that none of the derivatives exhibited mesomorphism. This study establishes that the absence of the hydroxyl group at C-2 of the sugar moiety results in a non-mesogenic nature of the alkyl 2-deoxy-alpha-D-glycosides, as opposed to the profound mesogenic nature of the normal alkyl glycosides.
Resumo:
Security in a mobile communication environment is always a matter for concern, even after deploying many security techniques at device, network, and application levels. The end-to-end security for mobile applications can be made robust by developing dynamic schemes at application level which makes use of the existing security techniques varying in terms of space, time, and attacks complexities. In this paper we present a security techniques selection scheme for mobile transactions, called the Transactions-Based Security Scheme (TBSS). The TBSS uses intelligence to study, and analyzes the security implications of transactions under execution based on certain criterion such as user behaviors, transaction sensitivity levels, and credibility factors computed over the previous transactions by the users, network vulnerability, and device characteristics. The TBSS identifies a suitable level of security techniques from the repository, which consists of symmetric, and asymmetric types of security algorithms arranged in three complexity levels, covering various encryption/decryption techniques, digital signature schemes, andhashing techniques. From this identified level, one of the techniques is deployed randomly. The results shows that, there is a considerable reduction in security cost compared to static schemes, which employ pre-fixed security techniques to secure the transactions data.
Resumo:
In this paper we address the problem of forming procurement networks for items with value adding stages that are linearly arranged. Formation of such procurement networks involves a bottom-up assembly of complex production, assembly, and exchange relationships through supplier selection and contracting decisions. Recent research in supply chain management has emphasized that such decisions need to take into account the fact that suppliers and buyers are intelligent and rational agents who act strategically. In this paper, we view the problem of Procurement Network Formation (PNF) for multiple units of a single item as a cooperative game where agents cooperate to form a surplus maximizing procurement network and then share the surplus in a fair manner. We study the implications of using the Shapley value as a solution concept for forming such procurement networks. We also present a protocol, based on the extensive form game realization of the Shapley value, for forming these networks.
Resumo:
The conformation, organization, and phase transitions of alkyl chains in organic-inorganic hybrids based on the double pervoskite-slab lead iodides, (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 (n = 11, 13, 15, 17) have been investigated by X-ray diffraction, calorimetry, and infrared vibrational spectroscopy. In these hybrid solids, double pervoskite (CH3NH3)Pb2I7 slabs are interleaved with alkyl ammonium chains with the anchored alkyl chains arranged as tilted bilayers and adopting a planar all-trans conformation at room temperature. The (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 compounds exhibit a single reversible phase transition above room temperature with the associated enthalpy change varying linearly with alkyl chain length. This transition corresponds to the melting in two-dimensions of the alkyl chains of the anchored bilayer and is characterized by increased conformational disorder of the methylene units of the chain and loss of tilt angle coherence leading to an increase in the interslab spacing. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting of the anchored bilayer is established. It is found that, irrespective of the alkyl chain length, melting occurs when at least 60% of the chains in the anchored bilayer of (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 have one or more gauche defects. This concentration is determined by the underlying lattice to which the alkyl chains are anchored.
Resumo:
Formation of high value procurement networks involves a bottom-up assembly of complex production, assembly, and exchange relationships through supplier selection and contracting decisions, where suppliers are intelligent and rational agents who act strategically. In this paper we address the problem of forming procurement networks for items with value adding stages that are linearly arranged We model the problem of Procurement Network Formation (PNF) for multiple units of a single item as a cooperative game where agents cooperate to form a surplus maximizing procurement network and then share the surplus in a stable and fair manner We first investigate the stability of such networks by examining the conditions under which the core of the game is non-empty. We then present a protocol, based on the extensive form game realization of the core, for forming such networks so that the resulting network is stable. We also mention a key result when the Shapley value is applied as a solution concept.