86 resultados para Compressed air energy storage

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal decomposition of Ca(OH)2 with and without additives has been experimentally investigated for its application as a thermochemical energy storage system. The homogeneous reaction model gives a satisfactory fit for the kinetic data on pure and Ni(OH)2---, Zn(OH)2--- and Al(OH)3---doped Ca(OH)2 and the order of reaction is 0.76 in all cases except for the Al(OH)3-doped sample for which the decomposition is zero order. These additives are shown not only to enhance the reaction rate but also to reduce the decomposition temperature significantly. Some models for solid decomposition reactions, and possible mechanisms in the decomposition of solids containing additives, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reversible chemical reaction of Ca(OH)2/CaO appears to be attractive for storage of solar thermal energy, in view of the nonpolluting and nontoxic nature of the reactants. This paper presents some data on thermal decomposition of calcium hydroxide pellets along with its additives of aluminum, aluminum hydroxide, zinc, and copper. The addition of aluminum and zinc powder enhanced the rate of decomposition considerably at 450°C, but copper had no effect. Considerations on the effect of additives are also discussed in some detail, though their effects are not established with certainty. There is some evidence that heat transfer into the pellet, and the number of potential nucleation sites due to thermal stresses, influence the kinetics and mechanism of decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionalized multiwalled carbon nanotubes (CNTs) are coated with a 4-5 nm thin layer of V(2)O(5) by controlled hydrolysis of vanadium alkoxide. The resulting V(2)O(5)/CNT composite has been investigated for electrochemical activity with lithium ion, and the capacity value shows both faradaic and capacitive (nonfaradaic) contributions. At high rate (1 C), the capacitive behavior dominates the intercalation as 2/3 of the overall capacity value out of 2700 C/g is capacitive, while the remaining is due to Li-ion intercalation. These numbers are in agreement with the Trasatti plots and are corroborated by X-ray photoelectron spectroscopy (XPS) studies on the V(2)O(5)/CNTs electrode, which show 85% of vanadium in the +4 oxidation state after the discharge at 1 C rate. The cumulative high-capacity value is attributed to the unique property of the nano V(2)O(5)/CNTs composite, which provides a short diffusion path for Lit-ions and an easy access to vanadium redox centers besides the high conductivity of CNTs. The composite architecture exhibits both high power density and high energy density, stressing the benefits of using carbon substrates to design high performance supercapacitor electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antiferroelectric lanthanum-modified PbZrO3 thin films with La contents between 0 and 6 at. % have been deposited on Pt(111)/Ti/SiO2/Si substrate by sol-gel route. On the extent of La-modification, maximum polarization (Pmax) and recoverable energy density (W) have been enhanced followed by their subsequent reduction. A maximum Pmax ( ∼ 0.54 C/m2 at ∼ 60 MV/m) as well as a maximum W ( ∼ 14.9 J/cc at ∼ 60 MV/m) have been achieved on 5% La modification. Both Pmax and W have been found to be strongly dependent on La-induced crystallographic orientations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several ways of storing electrical energy in chemical and physical forms and retrieving it on demand, and ultracapacitors are one among them. This article presents the taxonomy of ultracapacitor and describes various types of rechargeable-battery electrodes that can be used to realize the hybrid ultracapacitors in conjunction with a high-surface-area-graphitic-carbon electrode. While the electrical energy is stored in a battery electrode in chemical form, it is stored in physical form as charge in the electrical double-layer formed between the electrolyte and the high-surface-area-carbon electrodes. This article discusses various types of hybrid ultracapacitors along with the possible applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoassisted electrolysis of water is considered as an effective way of storing solar energy in the form of hydrogen fuel. This overall reaction involves the oxidation of water to oxygen at the anode and the reduction of protons to hydrogen at the cathode. Cobalt-phosphate-based catalyst (Co-Pi) is a potentially useful material for oxygen evolution reaction. In the present study, electrochemical deposition of Co-Pi catalyst is carried out on Au-coated quartz crystal from 0.1 M phosphate buffer (pH 7) containing 0.5 mM Co2+ ion, along with the simultaneous measurement of mass changes at the electrode surface. Cyclic voltammograms and mass variations are recorded during the course of deposition. A current peak is observed at 0.92 V vs Ag/AgCl, 3 M KCl corresponding to oxidation of Co2+ ion. The mass of the electrode starts increasing at this potential, suggesting the deposition of a Co(III)-based insoluble product on the electrode surface. The stability of the catalyst is also studied at several potentials in both buffered and nonbuffered electrolyte by monitoring the real-time mass variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manipulation of matter at the nanoscale is a way forward to move beyond our current choices in electrochemical energy storage and conversion technologies with promise of higher efficiency, environmental benignity, and cost-effectiveness. Electrochemical processes being basically surface phenomena, tailored multifunctional nanoarchitecturing can lead to improvements in terms of electronic and ionic conductivities, diffusion and mass transport, and electron transfer and electrocatalysis. The nanoscale is also a domain in which queer properties surface: those associated with conversion electrodes, ceramic particles enhancing the conductivity of polymer electrolytes, and transition metal oxide powders catalyzing fuel cell reactions, to cite a few. Although this review attempts to present a bird's eye view of the vast literature that has accumulated in this rather infant field, it also lists a few representative studies that establish the beneficial effects of going `nano'. Investigations on nanostructuring and use of nanoparticles and nanoarchitectures related to lithium-ion batteries (active materials and electrolytes), supercapacitors (electrical double-layer capacitors, supercapacitors based on pseudo-capacitance, and hybrid supercapacitors), and fuel cells (electrocatalysts, membranes and hydrogen storage materials) are highlighted. (C) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the transient dynamics of disturbances inside a thermocline based molten salt thermal energy storage (TES). Numerical simulations were conducted with four inlet flow configurations. The disturbances introduced at the inlet grow via Rayleigh Taylor instability. The formed vortical motions inside the tank propagate downstream and destroy the thermocline. The vortex-thermocline interaction upsets the stratification inside the TES. The disturbance growth rate, penetration length and vortex Reynolds number are measured. The growth of penetration length prior to the vortex-thermocline interaction is quadratic. The vortex Reynolds number of the eddy which causes thermocline breakdown increases with increase in Atwood number. The impingement of vortex on thermocline is studied. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we report the synthesis of TiO2/BiFeO3 nano-heterostnicture (NH) arrays by anchoring BiFeO3 (BFO) particles on on TiO2 nanotube surface and investigate their pseudocapacitive and photoelectrochemical properties considering their applications in green energy fields. The unique TiO2/BFO NHs have been demonstrated both as energy conversion and storage materials. The capacitive behavior of the NHs has been found to be significantly higher than that of the pristine TiO2 NTs, which is mainly due to the anchoring of redox active BFO nanoparticles. A specific capacitance of about 440 F g(-1) has been achieved for this NHs at a current density of 1.1 A g(-1) with similar to 80% capacity retention at a current density of 2.5 A g(-1). The NHs also exhibit high energy and power performance (energy density of 46.5 Wh kg(-1) and power density of 1.2 kW kg(-1) at a current density of 2.5 A g(-1)) with moderate cycling stability (92% capacity retention after 1200 cycles). Photoelectrochemical investigation reveals that the photocurrent density of the NHs is almost 480% higher than the corresponding dark current and it shows significantly improved photoswitching performance as compared to pure TiO2 nanotubes, which has been demonstrated based the interfacial type-II band alignment between TiO2 and BFO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy harvesting sensors (EHS), which harvest energy from the environment in order to sense and then communicate their measurements over a wireless link, provide the tantalizing possibility of perpetual lifetime operation of a sensor network. The wireless communication link design problem needs to be revisited for these sensors as the energy harvested can be random and small and not available when required. In this paper, we develop a simple model that captures the interactions between important parameters that govern the communication link performance of a EHS node, and analyze its outage probability for both slow fading and fast fading wireless channels. Our analysis brings out the critical importance of the energy profile and the energy storage capability on the EHS link performance. Our results show that properly tuning the transmission parameters of the EHS node and having even a small amount of energy storage capability improves the EHS link performance considerably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, power management algorithms for energy harvesting sensors (EHS) that operate purely based on energy harvested from the environment are proposed. To maintain energy neutrality, EHS nodes schedule their utilization of the harvested power so as to save/draw energy into/from an inefficient battery during peak/low energy harvesting periods, respectively. Under this constraint, one of the key system design goals is to transmit as much data as possible given the energy harvesting profile. For implementational simplicity, it is assumed that the EHS transmits at a constant data rate with power control, when the channel is sufficiently good. By converting the data rate maximization problem into a convex optimization problem, the optimal load scheduling (power management) algorithm that maximizes the average data rate subject to energy neutrality is derived. Also, the energy storage requirements on the battery for implementing the proposed algorithm are calculated. Further, robust schemes that account for the insufficiency of battery storage capacity, or errors in the prediction of the harvested power are proposed. The superior performance of the proposed algorithms over conventional scheduling schemes are demonstrated through computations using numerical data from solar energy harvesting databases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network life time maximization is becoming an important design goal in wireless sensor networks. Energy harvesting has recently become a preferred choice for achieving this goal as it provides near perpetual operation. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over a fading AWGN channel with perfect/no channel state information provided at the transmitter. We obtain an achievable rate when there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting `green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policies are related to the throughput optimal policies. We also obtain the capacity when energy conserving sleep-wake modes are supported and an achievable rate for the system with inefficiencies in energy storage.