18 resultados para Complex systems prediction

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of EXAFS data of complex systems containing more than one phase and one type of coordination, has been discussed. It is shown that a modified treatment of EXAFS function as well as the amplitude ratio plots provide useful means of obtaining valuable structural information. The systems investigated are: biphasic Ni+NiO mixture, NiAl2O4 with two coordinations for Ni, NiO+NiAl2O4 mixture, CoS+CoO system and Ni dispersed on Al2O3. The results obtained with these systems have been most satisfactory and serve to illustrate the utility and the applicability of the innovations described in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spreading and receding processes of water drops impacting on a stainless steel surface comprising rectangular shaped parallel grooves are studied experimentally. The study was confined to the impact of drops in inertia dominated flow regime with Weber number in the range 15 - 257. Measurements of spreading drop diameter and drop height were obtained during the impact process as function of time. Experimental measurements of spreading drop diameter and drop height obtained for the grooved surface were compared with those obtained for a smooth surface to elucidate the influence of surface grooves on the impact process. The grooves definitely influence both spreading and receding processes of impacting liquid drops. A more striking observation from this study is that the receding process of impacting liquid drops is dramatically changed by the groove structure for all droplet Weber number.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time dependent response of a polar solvent to a changing charge distribution is studied in solvation dynamics. The change in the energy of the solute is measured by a time domain Stokes shift in the fluorescence spectrum of the solute. Alternatively, one can use sophisticated non-linear optical spectroscopic techniques to measure the energy fluctuation of the solute at equilibrium. In both methods, the measured dynamic response is expressed by the normalized solvation time correlation function, S(t). The latter is found to exhibit uniquefeatures reflecting both the static and dynamic characteristics of each solvent. For water, S(t) consists of a dominant sub-50 fs ultrafast component, followed by a multi-exponential decay. Acetonitrile exhibitsa sub-100 fs ultrafast component, followed by an exponential decay. Alcohols and amides show features unique to each solvent and solvent series. However, understanding and interpretation of these results have proven to be difficult, and often controversial. Theoretical studiesand computer simulations have greatly facilitated the understanding ofS(t) in simple systems. Recently solvation dynamics has been used extensively to explore dynamics of complex systems, like micelles and reverse micelles, protein and DNA hydration layers, sol-gel mixtures and polymers. In each case one observes rich dynamical features, characterized again by multi-exponential decays but the initial and final time constants are now widely separated. In this tutorial review, we discuss the difficulties in interpreting the origin of the observed behaviour in complex systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physics of the solid state has grown into that of condensed matter and is now expanding into the study of a bewildering variety of complex systems. After a brief survey of this progression, I enquire into the health of solid state physics; many signs of vitality and growth are found. The Indian scene in this field is briefly sketched, and some suggestions are offered on how to make it more lively,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-exponential electron transfer kinetics in complex systems are often analyzed in terms of a quenched, static disorder model. In this work we present an alternative analysis in terms of a simple dynamic disorder model where the solvent is characterized by highly non-exponential dynamics. We consider both low and high barrier reactions. For the former, the main result is a simple analytical expression for the survival probability of the reactant. In this case, electron transfer, in the long time, is controlled by the solvent polarization relaxation-in agreement with the analyses of Rips and Jortner and of Nadler and Marcus. The short time dynamics is also non-exponential, but for different reasons. The high barrier reactions, on the other hand, show an interesting dynamic dependence on the electronic coupling element, V-el.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements a/the Gibbs' energy enthalpy and entrupy vffarmation oj chromites, vanadites and alumlnat.:s 0/ F", Ni. Co'. Mn, Zn Mg and Cd, using solid oxide galvanic cells over a ternperature range extending approximately lOOO°C, have shown that the '~'Ilir"!,,, J'JrIl/iJ~ tion 0/ cubic 2-3 oxide spinel phases (MX!O,), from component oxide (MO) with rock-salt and X.Os whir c(1f'l/!ldwn st!'llt'lw,·. call b,' represented by a semi-empirical correlalion, ~S~ = --LiS + L'i,SM +~S~:"d(±O.3) cal.deg-1 mol-1 where /',.SM Is the entropy 0/calian mixing oillhe tetrahedral alld octahedral sites o/the spinel and Sr:~ is tlie enfropy associaf,'d Wifh Ih,' randomization a/the lahn-Telier distortions. A review a/the methods/or evaluating the cation distriblltion lfl spille!s suggeJ{j' l/r,l! Ihe most promising scheme is based Oil octahedral site preference energies from the crystal field theory for the Iral1silioll IIIl'f"! IlIIL';. For I/""-Irallsifioll melal cal ions site preference energies are derived relative /0 thol'lt fLI, [ransilion metal ions from measured high tClllP('ftJi ure Cal iUlI disll iiJuriol1 in spine! phases thar contail! one IransilioJl metal and another non-transition metal carion. For 2-3 srinds compulatiorrs b,IS"J Oil i.!c[J;' Temkin mixing on each catioll subialtice predici JistributionJ that are In fair agreement with X-ray and 1I1'IIIrOll ditTraction, /IIdg""!ic dll.! electrical propcrries, and spectroscopic measurements. In 2-4 spineis mixing vI ions do not foliow strictly ideal slllIistli:al Jaws, Th,' OIl/up) associated with the randomizalion 0/the Jllhn-Teller dislOriioll" appear to be significant, only ill spinels witll 3d'. 3d', 3d' (ifld~UI' iOtls in tetrahedral and 3d' and 3d9 ions in octahedral positions. Application 0/this structural model for predicting the thermodynamic proputies ofspinel solid .,olutiofl5 or,' illustrated. F,lr complex systems additional contributions arising from strain fields, redox equilibria and off-center ions have to be qllalllififti. The entropy correlation for spinels provides a method for evaluating structure tran:.jormafiofl entropies in silllple o.\id.-s, ["founlllion on the relative stabilities ofoxides in different crystallCtructures is USe/III for computer ea/culaliof! a/phase dfugrullls ofIlIrer,',,1 III (N.lll1ie5 by method, similar to thost: used by Kaufman and Bernstein for refractory alloy systems. Examples oftechnoiogical appliCation tnclude the predictioll ofdeoxidation equilibria in Fe-Mn-AI-O s),slelll at 1600°C duj ,'Ulllpltfalion 0/phase relutions in Fe-Ni-Cr-S system,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Precision, sophistication and economic factors in many areas of scientific research that demand very high magnitude of compute power is the order of the day. Thus advance research in the area of high performance computing is getting inevitable. The basic principle of sharing and collaborative work by geographically separated computers is known by several names such as metacomputing, scalable computing, cluster computing, internet computing and this has today metamorphosed into a new term known as grid computing. This paper gives an overview of grid computing and compares various grid architectures. We show the role that patterns can play in architecting complex systems, and provide a very pragmatic reference to a set of well-engineered patterns that the practicing developer can apply to crafting his or her own specific applications. We are not aware of pattern-oriented approach being applied to develop and deploy a grid. There are many grid frameworks that are built or are in the process of being functional. All these grids differ in some functionality or the other, though the basic principle over which the grids are built is the same. Despite this there are no standard requirements listed for building a grid. The grid being a very complex system, it is mandatory to have a standard Software Architecture Specification (SAS). We attempt to develop the same for use by any grid user or developer. Specifically, we analyze the grid using an object oriented approach and presenting the architecture using UML. This paper will propose the usage of patterns at all levels (analysis. design and architectural) of the grid development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Moore's Law has driven the semiconductor revolution enabling over four decades of scaling in frequency, size, complexity, and power. However, the limits of physics are preventing further scaling of speed, forcing a paradigm shift towards multicore computing and parallelization. In effect, the system is taking over the role that the single CPU was playing: high-speed signals running through chips but also packages and boards connect ever more complex systems. High-speed signals making their way through the entire system cause new challenges in the design of computing hardware. Inductance, phase shifts and velocity of light effects, material resonances, and wave behavior become not only prevalent but need to be calculated accurately and rapidly to enable short design cycle times. In essence, to continue scaling with Moore's Law requires the incorporation of Maxwell's equations in the design process. Incorporating Maxwell's equations into the design flow is only possible through the combined power that new algorithms, parallelization and high-speed computing provide. At the same time, incorporation of Maxwell-based models into circuit and system-level simulation presents a massive accuracy, passivity, and scalability challenge. In this tutorial, we navigate through the often confusing terminology and concepts behind field solvers, show how advances in field solvers enable integration into EDA flows, present novel methods for model generation and passivity assurance in large systems, and demonstrate the power of cloud computing in enabling the next generation of scalable Maxwell solvers and the next generation of Moore's Law scaling of systems. We intend to show the truly symbiotic growing relationship between Maxwell and Moore!

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex systems inspired analysis suggests a hypothesis that financial meltdowns are abrupt critical transitions that occur when the system reaches a tipping point. Theoretical and empirical studies on climatic and ecological dynamical systems have shown that approach to tipping points is preceded by a generic phenomenon called critical slowing down, i.e. an increasingly slow response of the system to perturbations. Therefore, it has been suggested that critical slowing down may be used as an early warning signal of imminent critical transitions. Whether financial markets exhibit critical slowing down prior to meltdowns remains unclear. Here, our analysis reveals that three major US (Dow Jones Index, S&P 500 and NASDAQ) and two European markets (DAX and FTSE) did not exhibit critical slowing down prior to major financial crashes over the last century. However, all markets showed strong trends of rising variability, quantified by time series variance and spectral function at low frequencies, prior to crashes. These results suggest that financial crashes are not critical transitions that occur in the vicinity of a tipping point. Using a simple model, we argue that financial crashes are likely to be stochastic transitions which can occur even when the system is far away from the tipping point. Specifically, we show that a gradually increasing strength of stochastic perturbations may have caused to abrupt transitions in the financial markets. Broadly, our results highlight the importance of stochastically driven abrupt transitions in real world scenarios. Our study offers rising variability as a precursor of financial meltdowns albeit with a limitation that they may signal false alarms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When immobilized enzyme kinetics are disguised by inter- and intraparticle diffusion effects, an approximate mathematical procedure is indicated whereby experimental data obtained in the limiting ranges of first- and zeroth-order Michaelis-Menten kinetics could be used for the prediction of the kinetic constants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present through the use of Petri Nets, modeling techniques for digital systems realizable using FPGAs. These Petri Net models are used for logic validation at the logic design phase. The technique is illustrated by modeling practical circuits. Further, the utility of the technique with respect to timing analysis of the modeled digital systems is considered. Copyright (C) 1997 Elsevier Science Ltd