13 resultados para Complex Engineering Systems
em Indian Institute of Science - Bangalore - Índia
Resumo:
We present through the use of Petri Nets, modeling techniques for digital systems realizable using FPGAs. These Petri Net models are used for logic validation at the logic design phase. The technique is illustrated by modeling practical circuits. Further, the utility of the technique with respect to timing analysis of the modeled digital systems is considered. Copyright (C) 1997 Elsevier Science Ltd
Resumo:
Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.
Resumo:
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
Resumo:
This paper presents three methodologies for determining optimum locations and magnitudes of reactive power compensation in power distribution systems. Method I and Method II are suitable for complex distribution systems with a combination of both radial and ring-main feeders and having different voltage levels. Method III is suitable for low-tension single voltage level radial feeders. Method I is based on an iterative scheme with successive powerflow analyses, with formulation and solution of the optimization problem using linear programming. Method II and Method III are essentially based on the steady state performance of distribution systems. These methods are simple to implement and yield satisfactory results comparable with the results of Method I. The proposed methods have been applied to a few distribution systems, and results obtained for two typical systems are presented for illustration purposes.
Resumo:
In routine industrial design, fatigue life estimation is largely based on S-N curves and ad hoc cycle counting algorithms used with Miner's rule for predicting life under complex loading. However, there are well known deficiencies of the conventional approach. Of the many cumulative damage rules that have been proposed, Manson's Double Linear Damage Rule (DLDR) has been the most successful. Here we follow up, through comparisons with experimental data from many sources, on a new approach to empirical fatigue life estimation (A Constructive Empirical Theory for Metal Fatigue Under Block Cyclic Loading', Proceedings of the Royal Society A, in press). The basic modeling approach is first described: it depends on enforcing mathematical consistency between predictions of simple empirical models that include indeterminate functional forms, and published fatigue data from handbooks. This consistency is enforced through setting up and (with luck) solving a functional equation with three independent variables and six unknown functions. The model, after eliminating or identifying various parameters, retains three fitted parameters; for the experimental data available, one of these may be set to zero. On comparison against data from several different sources, with two fitted parameters, we find that our model works about as well as the DLDR and much better than Miner's rule. We finally discuss some ways in which the model might be used, beyond the scope of the DLDR.
Resumo:
Numerically discretized dynamic optimization problems having active inequality and equality path constraints that along with the dynamics induce locally high index differential algebraic equations often cause the optimizer to fail in convergence or to produce degraded control solutions. In many applications, regularization of the numerically discretized problem in direct transcription schemes by perturbing the high index path constraints helps the optimizer to converge to usefulm control solutions. For complex engineering problems with many constraints it is often difficult to find effective nondegenerat perturbations that produce useful solutions in some neighborhood of the correct solution. In this paper we describe a numerical discretization that regularizes the numerically consistent discretized dynamics and does not perturb the path constraints. For all values of the regularization parameter the discretization remains numerically consistent with the dynamics and the path constraints specified in the, original problem. The regularization is quanti. able in terms of time step size in the mesh and the regularization parameter. For full regularized systems the scheme converges linearly in time step size.The method is illustrated with examples.
Resumo:
Tank irrigation systems in the semiarid regions of India are discussed in this paper. To optimize the grain yield of rice, it is essential to start the agricultural operations in the second week of July so that favorable climatic conditions will prevail during flowering and yield formation stages. Because of low inflow during the initial few weeks of the crop season, often farmers are forced to delay planting until sufficient sowing rain and inflow have occurred or to adopt deficit irrigation during this period. The delayed start affects the grain yield, but will lead to an improved irrigation efficiency. A delayed start of agricultural operations with increased irrigation efficiency leads to the energy resources becoming critical during the peak requirement week, particularly those of female labor and animal power. This necessitates augmenting these resources during weeks of their peak use, either by reorganizing the traditional methods of cultivation or by importing from outside the system.
Resumo:
We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]
Resumo:
Biomimetics involves transfer from one or more biological examples to a technical system. This study addresses four questions. What are the essential steps in a biomimetic process? What is transferred? How can the transferred knowledge be structured in a way useful for biologists and engineers? Which guidelines can be given to support transfer in biomimetic design processes? In order to identify the essential steps involved in carrying out biomimetics, several procedures found in the literature were summarized, and four essential steps that are common across these procedures were identified. For identification of mechanisms for transfer, 20 biomimetic examples were collected and modeled according to a model. of causality called the SAPPhIRE model. These examples were then analyzed for identifying the underlying similarity between each biological and corresponding analogue technical system. Based on the SAPPhIRE model, four levels of abstraction at which transfer takes place were identified. Taking into account similarity, the biomimetic examples were assigned to the appropriate levels of abstraction of transfer. Based on the essential steps and the levels of transfer, guidelines for supporting transfer in biomimetic design were proposed and evaluated using design experiments. The 20 biological and analogue technical systems that were analyzed were similar in the physical effects used and at the most abstract levels of description of their functionality, but they were the least similar at the lowest levels of abstraction: the parts involved. Transfer most often was carried out at the physical effect level of abstraction. Compared to a generic set of guidelines based on the literature, the proposed guidelines improved design performance by about 60%. Further, the SAPPhIRE model turned out to be a useful representation for modeling complex biological systems and their functionality. Databases of biological systems, which are structured using the SAPPhIRE model, have the potential to aid biomimetic concept generation.
Resumo:
Modelling of city traffic involves capturing of all the dynamics that exist in real-time traffic. Probabilistic models and queuing theory have been used for mathematical representation of the traffic system. This paper proposes the concept of modelling the traffic system using bond graphs wherein traffic flow is based on energy conservation. The proposed modelling approach uses switched junctions to model complex traffic networks. This paper presents the modelling, simulation and experimental validation aspects.
Resumo:
Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.
Resumo:
Complex biological systems such as the human brain can be expected to be inherently nonlinear and hence difficult to model. Most of the previous studies on investigations of brain function have either used linear models or parametric nonlinear models. In this paper, we propose a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study seizures in the brain. The advantage of this nonparametric method is that it makes very few assumptions thus making it possible to investigate brain functioning in a data-driven way. We have demonstrated the utility of CPR measure for the study of phase synchronization in multichannel seizure EEG recorded from patients with global as well as focal epilepsy. For the case of global epilepsy, brain synchronization using thresholded CPR matrix of multichannel EEG signals showed clear differences in results obtained for epileptic seizure and pre-seizure. Brain headmaps obtained for seizure and preseizure cases provide meaningful insights about synchronization in the brain in those states. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. Comparative studies with linear correlation have shown that the nonlinear measure CPR outperforms the linear correlation measure. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a novel experimental test procedure to estimate the reliability of structural dynamical systems under excitations specified via random process models. The samples of random excitations to be used in the test are modified by the addition of an artificial control force. An unbiased estimator for the reliability is derived based on measured ensemble of responses under these modified inputs based on the tenets of Girsanov transformation. The control force is selected so as to reduce the sampling variance of the estimator. The study observes that an acceptable choice for the control force can be made solely based on experimental techniques and the estimator for the reliability can be deduced without taking recourse to mathematical model for the structure under study. This permits the proposed procedure to be applied in the experimental study of time-variant reliability of complex structural systems that are difficult to model mathematically. Illustrative example consists of a multi-axes shake table study on bending-torsion coupled, geometrically non-linear, five-storey frame under uni/bi-axial, non-stationary, random base excitation. Copyright (c) 2014 John Wiley & Sons, Ltd.