236 resultados para Compact Space
em Indian Institute of Science - Bangalore - Índia
Resumo:
We consider convolution equations of the type f * T = g, where f, g is an element of L-P (R-n) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T, we show that f is compactly supported, provided g is. Similar results are proved for non-compact symmetric spaces as well. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A geometric invariant is associated to the space of fiat connections on a G-bundle over a compact Riemann surface and is related to the energy of harmonic functions.
Resumo:
The focus of this paper is on the practical aspects of design, prototyping, and testing of a compact, compliant external pipe-crawling robot that can inspect a closely spaced bundle of pipes in hazardous environments and areas that are inaccessible to humans. The robot consists of two radially deployable compliant ring actuators that are attached to each other along the longitudinal axis of the pipe by a bidirectional linear actuator. The robot imitates the motion of an inchworm. The novel aspect of the compliant ring actuator is a spring-steel compliant mechanism that converts circumferential motion to radial motion of its multiple gripping pads. Circumferential motion to ring actuators is provided by two shape memory alloy (SMA) wires that are guided by insulating rollers. The design of the compliant mechanism is derived from a radially deployable mechanism. A unique feature of the design is that the compliant mechanism provides the necessary kinematic function within the limited annular space around the pipe and serves as the bias spring for the SMA wires. The robot has a control circuit that sequentially activates the SMA wires and the linear actuator; it also controls the crawling speed. The robot has been fabricated, tested, and automated. Its crawling speed is about 45 mm/min, and the weight is about 150 g. It fits within an annular space of a radial span of 15 mm to crawl on a pipe of 60-mm outer diameter.
Resumo:
This work grew out of an attempt to understand a conjectural remark made by Professor Kyoji Saito to the author about a possible link between the Fox-calculus description of the symplectic structure on the moduli space of representations of the fundamental group of surfaces into a Lie group and pairs of mutually dual sets of generators of the fundamental group. In fact in his paper [3] , Prof. Kyoji Saito gives an explicit description of the system of dual generators of the fundamental group.
Resumo:
For point to point multiple input multiple output systems, Dayal-Brehler-Varanasi have proved that training codes achieve the same diversity order as that of the underlying coherent space time block code (STBC) if a simple minimum mean squared error estimate of the channel formed using the training part is employed for coherent detection of the underlying STBC. In this letter, a similar strategy involving a combination of training, channel estimation and detection in conjunction with existing coherent distributed STBCs is proposed for noncoherent communication in Amplify-and-Forward (AF) relay networks. Simulation results show that the proposed simple strategy outperforms distributed differential space-time coding for AF relay networks. Finally, the proposed strategy is extended to asynchronous relay networks using orthogonal frequency division multiplexing.
Resumo:
We design rapidly folding sequences by assigning the strongest couplings to the contacts present in a target native state in a two dimensional model of heteropolymers. The pathways to folding and their dependence on the temperature are illustrated via a mapping of the dynamics into motion within the space of the maximally compact cells.
Resumo:
The Taylor coefficients c and d of the EM form factor of the pion are constrained using analyticity, knowledge of the phase of the form factor in the time-like region, 4m(pi)(2) <= t <= t(in) and its value at one space-like point, using as input the (g - 2) of the muon. This is achieved using the technique of Lagrange multipliers, which gives a transparent expression for the corresponding bounds. We present a detailed study of the sensitivity of the bounds to the choice of time-like phase and errors present in the space-like data, taken from recent experiments. We find that our results constrain c stringently. We compare our results with those in the literature and find agreement with the chiral perturbation-theory results for c. We obtain d similar to O(10) GeV-6 when c is set to the chiral perturbation-theory values.
Resumo:
An accretion flow is necessarily transonic around a black hole.However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point. possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic point's vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.
Resumo:
Neural data are inevitably contaminated by noise. When such noisy data are subjected to statistical analysis, misleading conclusions can be reached. Here we attempt to address this problem by applying a state-space smoothing method, based on the combined use of the Kalman filter theory and the Expectation–Maximization algorithm, to denoise two datasets of local field potentials recorded from monkeys performing a visuomotor task. For the first dataset, it was found that the analysis of the high gamma band (60–90 Hz) neural activity in the prefrontal cortex is highly susceptible to the effect of noise, and denoising leads to markedly improved results that were physiologically interpretable. For the second dataset, Granger causality between primary motor and primary somatosensory cortices was not consistent across two monkeys and the effect of noise was suspected. After denoising, the discrepancy between the two subjects was significantly reduced.
Resumo:
Distributed space time coding for wireless relay networks when the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set-up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. A new class of distributed space time block codes called Co-ordinate Interleaved Distributed Space-Time Codes (CIDSTC) are introduced where, in the first phase, the source transmits a T-length complex vector to all the relays;and in the second phase, at each relay, the in-phase and quadrature component vectors of the received complex vectors at the two antennas are interleaved and processed before forwarding them to the destination. Compared to the scheme proposed by Jing-Hassibi, for T >= 4R, while providing the same asymptotic diversity order of 2R, CIDSTC scheme is shown to provide asymptotic coding gain with the cost of negligible increase in the processing complexity at the relays. However, for moderate and large values of P, CIDSTC scheme is shown to provide more diversity than that of the scheme proposed by Jing-Hassibi. CIDSTCs are shown to be fully diverse provided the information symbols take value from an appropriate multidimensional signal set.
Resumo:
A forest of quadtrees is a refinement of a quadtree data structure that is used to represent planar regions. A forest of quadtrees provides space savings over regular quadtrees by concentrating vital information. The paper presents some of the properties of a forest of quadtrees and studies the storage requirements for the case in which a single 2m × 2m region is equally likely to occur in any position within a 2n × 2n image. Space and time efficiency are investigated for the forest-of-quadtrees representation as compared with the quadtree representation for various cases.
Resumo:
The specific objective of this paper is to develop a state space model of a tubular ammonia reactor which is the heart of an ammonia plant in a fertiliser complex. A ninth order model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. The lumped model is chosen such that the steady state temperature at the exit of the catalyst bed computed from the simplified state space model is close enough to the one computed from the nonlinear steady state model. The model developed in this paper is very useful for the design of continuous/discrete versions of single variable/multivariable control algorithms.
Resumo:
The properties of the manifold of a Lie groupG, fibered by the cosets of a sub-groupH, are exploited to obtain a geometrical description of gauge theories in space-timeG/H. Gauge potentials and matter fields are pullbacks of equivariant fields onG. Our concept of a connection is more restricted than that in the similar scheme of Ne'eman and Regge, so that its degrees of freedom are just those of a set of gauge potentials forG, onG/H, with no redundant components. The ldquotranslationalrdquo gauge potentials give rise in a natural way to a nonsingular tetrad onG/H. The underlying groupG to be gauged is the groupG of left translations on the manifoldG and is associated with a ldquotrivialrdquo connection, namely the Maurer-Cartan form. Gauge transformations are all those diffeomorphisms onG that preserve the fiber-bundle structure.
Resumo:
This paper proposes a multilevel inverter configuration which produces a hexagonal voltage space vector structure in the lower modulation region and a 12-sided polygonal space vector structure in the overmodulation region. A conventional multilevel inverter produces 6n plusmn 1 (n = odd) harmonics in the phase voltage during overmodulation and in the extreme square-wave mode of operation. However, this inverter produces a 12-sided polygonal space vector location, leading to the elimination of 6n plusmn 1 (n = odd) harmonics in the overmodulation region extending to a final 12-step mode of operation with a smooth transition. The benefits of this arrangement are lower losses and reduced torque pulsation in an induction motor drive fed from this converter at higher modulation indexes. The inverter is fabricated by using three conventional cascaded two-level inverters with asymmetric dc-bus voltages. A comparative simulation study of the harmonic distortion in the phase voltage and associated losses in conventional multilevel inverters and that of the proposed inverter is presented in this paper. Experimental validation on a prototype shows that the proposed converter is suitable for high-power applications because of low harmonic distortion and low losses.
Resumo:
In this paper, we generalize the existing rate-one space frequency (SF) and space-time frequency (STF) code constructions. The objective of this exercise is to provide a systematic design of full-diversity STF codes with high coding gain. Under this generalization, STF codes are formulated as linear transformations of data. Conditions on these linear transforms are then derived so that the resulting STF codes achieve full diversity and high coding gain with a moderate decoding complexity. Many of these conditions involve channel parameters like delay profile (DP) and temporal correlation. When these quantities are not available at the transmitter, design of codes that exploit full diversity on channels with arbitrary DIP and temporal correlation is considered. Complete characterization of a class of such robust codes is provided and their bit error rate (BER) performance is evaluated. On the other hand, when channel DIP and temporal correlation are available at the transmitter, linear transforms are optimized to maximize the coding gain of full-diversity STF codes. BER performance of such optimized codes is shown to be better than those of existing codes.