7 resultados para Common environment
em Indian Institute of Science - Bangalore - Índia
Resumo:
We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network having interactions with a common environment like external system. We develop a general stability analysis that is valid for any network topology and obtain the threshold values of coupling constants for the onset of amplitude death. An important outcome of our study is a universal relation between the critical coupling strength and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical analysis for different network topologies.
Resumo:
We describe the on-going design and implementation of a sensor network for agricultural management targeted at resource-poor farmers in India. Our focus on semi-arid regions led us to concentrate on water-related issues. Throughout 2004, we carried out a survey on the information needs of the population living in a cluster of villages in our study area. The results highlighted the potential that environment-related information has for the improvement of farming strategies in the face of highly variable conditions, in particular for risk management strategies (choice of crop varieties, sowing and harvest periods, prevention of pests and diseases, efficient use of irrigation water etc.). This leads us to advocate an original use of Information and Communication Technologies (ICT). We believe our demand-driven approach for the design of appropriate ICT tools that are targeted at the resource-poor to be relatively new. In order to go beyond a pure technocratic approach, we adopted an iterative, participatory methodology.
Resumo:
Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.
Resumo:
Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.
Resumo:
Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.
Resumo:
Functions are important in designing. However, several issues hinder progress with the understanding and usage of functions: lack of a clear and overarching definition of function, lack of overall justifications for the inevitability of the multiple views of function, and scarcity of systematic attempts to relate these views with one another. To help resolve these, the objectives of this research are to propose a common definition of function that underlies the multiple views in literature and to identify and validate the views of function that are logically justified to be present in designing. Function is defined as a change intended by designers between two scenarios: before and after the introduction of the design. A framework is proposed that comprises the above definition of function and an empirically validated model of designing, extended generate, evaluate, modify, and select of state-change, and an action, part, phenomenon, input, organ, and effect model of causality (Known as GEMS of SAPPhIRE), comprising the views of activity, outcome, requirement-solution-information, and system-environment. The framework is used to identify the logically possible views of function in the context of designing and is validated by comparing these with the views of function in the literature. Describing the different views of function using the proposed framework should enable comparisons and determine relationships among the various views, leading to better understanding and usage of functions in designing.
Resumo:
-helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These -helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze -helices in a high-resolution dataset of integral -helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420-3436. (c) 2014 Wiley Periodicals, Inc.