270 resultados para Combustion.
em Indian Institute of Science - Bangalore - Índia
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
The nature of surface and subsurface reactions in polymer combustion is poorly underst0od.l During the burning of thermoplastic polymers a melt layer is observed on the surface, and below the melt layer there is thermal wave penetration. But the exact thickness of the melt layer and the thickness of the thermal wave penetration have not been precisely measured, although a qualitative idea has been given.
Resumo:
The effect of transition metal oxides (Fe2O3, MnO2, Ni2O3 and Co2O3) on polystyrene/ammonium perchlorate propellant systems has been examined. The mechanism of action of the oxides in increasing the burning rate was examined by studying the effect of the oxides on the thermal decomposition and combustion of the oxidizer and the propellant. It has been concluded that one of the mechanisms by which the oxides act is by promoting the charge-transfer process, which is indicated by the enhancement of the electron-transfer process in ammonium perchlorate and by the correlation between the redox potential of the metal ions and the corresponding burning rates of the propellant.
Resumo:
A systematic study was undertaken on the combustion and thermal decomposition of pelletized Ammonium Perchlorate (AP) to investigate the effects of pelletizing pressure and dwell time. At constant pressure, increasing the dwell time results in an increase in the burning rate up to a maximum and thereafter decreases it. The dwell time required for the pellets to have maximum burning rate is a function of pressure. The maximum burning rate is the same for all the pressures used and is also unaffected by increasing, to the range 90-250 μ, the particle size of AP used. In order to explain the occurrence of a maximum in burning rate, pellets were examined for their thermal sensitivities, physical nature and the changes occurring during pelletization with dwell time and pressure. The variations are argued in terms of increasing density, formation of defects such as dislocations leading to an increase in the number of reactive sites, followed by their partial annihilation at longer dwell times due to flow of material during pelletization.
Resumo:
The participation of aluminum in the decomposition reaction of ammonium perchlorate (AP) is enhanced if magnesium is added—either as a mixture of Al and Mg powders or as an alloy of Mg in Al. The differential thermal analyses of the compositions show a sensitization in the temperatures of decomposition, as well as increase in the heat of reaction. The AP-Mg and Ap-(Mg---Li) alloy pellets also show increased reactivity. The burning rates of AP-(Al-10% Mg) alloy pellets increase with increase in the alloy content, while calorimetric values peak at 40% alloy content. The combustion product gases of AP-40% (Al-10% Mg) alloy contain large quantities of hydrogen.
Resumo:
A study of the burning rates of compressed mixtures of ammonium perchlorate (AP) and trimethylammonium perchlorate (TMAP) has been carried out at ambient pressure. The overall increase in the linear burning rate, showing a maximum at a composition having 80% TMAP, has been discussed in terms of factors such as stoichiometry, presence of faster burning component, and eutectic melt formation. The thermal decomposition studies of the mixtures, using isothermal thermogravimetry and differential thermal analysis techniques, indicate the possibility of eutectic melt formation.
Resumo:
Synthesis of fine particle α-alumina and related oxide materials such as MgAl2O4, CaAl2O4, Y3Al5O12 (YAG), Image , β′-alumina, LaAlO3 and ruby powder (Image ) has been achieved at low temperatures (500°C) by the combustion of corresponding metal nitrate-urea mixtures. Solid combustion products have been identified by their characteristic X-ray diffraction patterns. The fine particle nature of α-alumina and related oxide materials has been investigated using SEM, TEM, particle size analysis and surface area measurements.
Resumo:
The heats of combustion of mono-, di-, tri- and tetramethylammonium perchlorates have been determined by bomb calorimetry. The data have been used to explain why the thermal behavior of ammonium perchlorate (AP) is considerably modified in presence of these compounds as shown by differential thermal analysis. Above a particular concentration of methylammonium perchlorate (MAP), AP ignites in a single step around 290°C. The minimum concentration of a MAP (mono-, di-, tri- or tetra-) needed to cause ignition of AP in a single step depends on intramolecular “elemental stoichiometric coefficient” of the mixtures that has the same value regardless of the MAP. Furthermore, the calorimetric values of these mixtures are the same. The heat evolved on ignition of such a composition appears to determine the lower concentration limit of combustion of its mixture with AP.
Resumo:
A strip of Whatman filter paper (α-cellulose) dipped in an aqueous solution of dihydrazinium phosphate, (N2H5)2HPO4(DHP), and dried, carbonized without flame when ignited. The observed flame retardancy of DHP on α-cellulose has been studied using TG, DTA and mass spectrometry. Dihydrazinium phosphate appears to catalyze the dehydration of α-cellulose, minimizing the depolymerization which produces flammable tars, with the formation of water and char. Flame retardancy of DHP is compared with that of diammonium phosphate and phosphoric acid.
Resumo:
Combustion behaviour of ammonium perchlorate-potassium perchlorate pellets is studied using Crawford strand burners. At low concentrations of potassium perchlorate (up to 30 percent potassium perchlorate) the burning rate of ammonium perchlorate-potassium perchlorate condensed mixtures increases with potassium perchlorate content. Above 40 percent potassium perchlorate content, combustion sustenance becomes difficult. Decomposition products of ammonium perchlorate sensitize the melting and subsequent decomposition of potassium perchlorate. The results are explained in terms of the melt layer thickness, flame temperature and the resultant surface temperature, and heat wave penetration into the solid. The study suggests the importance of melt layer on the burning surface in the deflagration behaviour of ammonium perchlorate-potassium perchlorate condensed mixtures
Resumo:
A study of the essential features of piston rings in the cylinder liner of an internal combustion engine reveals that the lubrication problem posed by it is basically that of a slider bearing. According to steady-flow-hydrodynamics, viz. Image the oil film thickness becomes zero at the dead centre positions as the velocity, U = 0. In practice, however, such a phenomenon cannot be supported by consideration of the wear rates of pistion rings and cylinder liners. This can be explained by including the “squeeze” action term in the
Resumo:
Thermal decomposition and combustion of lithium perchlorate ammine:ammonium perchlorate (LPA:AP) and magnesium perchlorate ammine:ammonium perchlorate (MPA:AP) pellets have been studied using DTA, TG, and strand burner techniques. The DTA results of the ammine:AP pellets show that the addition of ammines lowers the ignition temperature of AP. However, isothermal TG of the ammine:AP pellets show that in the case of LPA:AP pellets the extent of decomposition increases with the increase in the concentration of LPA; whereas in the case of MPA:AP pellets the extent of decomposition decreases with the increase in the concentration of MPA. Similarly, LPA:AP pellets show higher burning rates compared to AP pellets. On the other hand, MPA:AP pellets show lower burning rates compared to AP pellets. Increasing the concentration of MPA in MPA:AP pellets completely suppresses the combustion. These results are explained on the basis of the thermal characteristics of the additives and their decomposition products.
Resumo:
Thermal behaviour of ammonium perchlorate-aluminium composites is studied using differential thermal analysis, thermogravimetry and differential scanning calorimetry. Electrical resistivity studies throw light on the mechanism of ammonium perchlorate decomposition at different aluminium contents. The differences observed in burning behaviour by earlier authors is explained in terms of porosity and thermal conductivity of the composite.
Resumo:
A constant volume window bomb has been used to measure the characteristic velocity (c*) of rocket propellants. Analysis of the combustion process inside the bomb including heat losses has been made. The experiments on double base and composite propellants have revealed some (i) basic heat transfer aspects inside the bomb and (ii) combustion characteristics of Ammonium Perchlorate-Polyester propellants. It has been found that combustion continues even beyond the peak pressure and temperature points. Lithium Fluoride mixed propellants do not seem to indicate significant differences in c*) though the low pressure deflagration limit is increased with percentage of Lithium Fluoride.