26 resultados para Collective intellectual capital

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

India has been acknowledged as a large reservoir of nature's random mutation, an original 'rich' source of knowledge in the context of international genome studies. Human genome knowledge and the possible understanding of the basis of uniqueness of each individual in chemical terms has presented a number of inescapable challenges to our own jurisprudence philosophies and our ethical sensibilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syntheses of protein molecules in a cell are carried out by ribosomes.A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a Michaelis-Menten-type'' equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a glowworm swarm based algorithm that finds solutions to optimization of multiple optima continuous functions. The algorithm is a variant of a well known ant-colony optimization (ACO) technique, but with several significant modifications. Similar to how each moving region in the ACO technique is associated with a pheromone value, the agents in our algorithm carry a luminescence quantity along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luminescence and have a circular sensor range. The glowworms depend on a local-decision domain to compute their movements. Simulations demonstrate the efficacy of the proposed glowworm based algorithm in capturing multiple optima of a multimodal function. The above optimization scenario solves problems where a collection of autonomous robots is used to form a mobile sensor network. In particular, we address the problem of detecting multiple sources of a general nutrient profile that is distributed spatially on a two dimensional workspace using multiple robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microscopic study of the non‐Markovian (or memory) effects on the collective orientational relaxation in a dense dipolar liquid is carried out by using an extended hydrodynamic approach which provides a reliable description of the dynamical processes occuring at the molecular length scales. Detailed calculations of the wave‐vector dependent orientational correlation functions are presented. The memory effects are found to play an important role; the non‐Markovian results differ considerably from that of the Markovian theory. In particular, a slow long‐time decay of the longitudinal orientational correlation function is observed for dense liquids which becomes weaker in the presence of a sizeable translational contribution to the collective orientational relaxation. This slow decay can be attributed to the intermolecular correlations at the molecular length scales. The longitudinal component of the orientational correlation function becomes oscillatory in the underdamped limit of momenta relaxations and the frequency dependence of the friction reduce the frictional resistance on the collective excitations (commonly known as dipolarons) to make them long lived. The theory predicts that these dipolarons can, therefore, be important in chemical relaxation processes, in contradiction to the claims of some earlier theoretical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently developed microscopic theory of solvation dynamics in real dipolar liquids is used to calculate, for the first time, the solvation time correlation function in liquid acetonitrile, water and methanol. The calculated results are in excellent agreement with known experimental and computer simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular theory of underdamped dielectric relaxation of a dense dipolar liquid is presented. This theory properly takes into account the collective effects that are present (due to strong intermolecular correlations) in a dipolar liquid. For small rigid molecules, the theory again leads to a three-variable description which, however, is somewhat different from the traditional version. In particular, two of the three parameters are collective in nature and are determined by the orientational pair correlation function. A detailed comparison between the theory and the computer simulation results of Neria and Nitzan is performed and an excellent agreement is obtained without the use of any adjustable or free parameter - the calculation is fully microscopic. The theory can also provide a systematic description of the Poley absorption often observed in dipolar liquids in the high-frequency regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and computer simulation studies of orientational relaxation in dense molecular liquids are presented. The emphasis of the study is to understand the effects of collective orientational relaxation on the single-particle orientational dynamics. The theoretical analysis is based on a recently developed molecular hydrodynamic theory which allows a self-consistent description of both the collective and the single-particle orientational relaxation. The molecular hydrodynamic theory can be used to derive a relation between the memory function for the collective orientational correlation function and the frequency-dependent dielectric function. A novel feature of the present work is the demonstration that this collective memory function is significantly different from the single-particle rotational friction. However, a microscopic expression for the single-particle rotational friction can be derived from the molecular hydrodynamic theory where the collective memory function can be used to obtain the single-particle orientational friction. This procedure allows, us to calculate the single-particle orientational correlation function near the alpha-beta transition in the supercooled liquid. The calculated correlation function shows an interesting bimodal decay below the bifurcation temperature as the glass transition is approached from above. Brownian dynamics simulations have been carried out to check the validity of the above procedure of translating the memory function from the dielectric relaxation data. We have also investigated the following two issues important in understanding the orientational relaxation in slow liquids. First, we present an analysis of the ''orientational caging'' of translational motion. The value of the translational friction is found to be altered significantly by the orientational caging. Second, we address the question of the rank dependence of the dielectric friction using both simulation and the molecular hydrodynamic theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalized the Enskog theory originally developed for the hard-sphere fluid to fluids with continuous potentials, such as the Lennard–Jones. We derived the expression for the k and ω dependent transport coefficient matrix which enables us to calculate the transport coefficients for arbitrary length and time scales. Our results reduce to the conventional Chapman–Enskog expression in the low density limit and to the conventional k dependent Enskog theory in the hard-sphere limit. As examples, the self-diffusion of a single atom, the vibrational energy relaxation, and the activated barrier crossing dynamics problem are discussed.