7 resultados para Codman, John, 1755-1803.
em Indian Institute of Science - Bangalore - Índia
Resumo:
This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis x Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.
Resumo:
Porous, large surface area, metastable zirconias, are of importance to catalytic, electrochemical, biological, and thermal insulation applications. Combustion synthesis is a very commonly used method for producing such zirconias. However, its rapid nature makes control difficult. A simple modification has been made to traditional solution combustion synthesis to address this problem. It involves the addition of starch to yield a starting mixture with a ``dough-like'' consistency. Just 5 wt% starch is seen to significantly alter the combustion characteristics of the ``dough.'' In particular, it helps to achieve better control over reaction zone temperature that is significantly lower than the one calculated by the adiabatic approximation typically used in self-propagating high-temperature synthesis. The effect of such control is demonstrated by the ability to tune dough composition to yield zirconias with different phase compositions from the relatively elusive ``amorphous'' to monoclinic (> 30 nm grain size) and tetragonal pure zirconia (< 30 nm grain size). The nature of this amorphous phase has been investigated using infrared spectroscopy. Starch content also helps tailor porosity in the final product. Zirconias with an average pore size of about 50 mu m and specific surface area as large as 110 m2/g have been obtained.
Resumo:
The Himalaya has experienced three great earthquakes during the last century1934 Nepal-Bihar, 1950 Upper Assam, and arguably the 1905 Kangra. Focus here is on the central Himalayan segment between the 1905 and the 1934 ruptures, where previous studies have identified a great earthquake between thirteenth and sixteenth centuries. Historical data suggest damaging earthquakes in A.D. 1255, 1344, 1505, 1803, and 1833, although their sources and magnitudes remain debated. We present new evidence for a great earthquake from a trench across the base of a 13m high scarp near Ramnagar at the Himalayan Frontal Thrust. The section exposed four south verging fault strands and a backthrust offsetting a broad spectrum of lithounits, including colluvial deposits. Age data suggest that the last great earthquake in the central Himalaya most likely occurred between A.D. 1259 and 1433. While evidence for this rupture is unmistakable, the stratigraphic clues imply an earlier event, which can most tentatively be placed between A.D. 1050 and 1250. The postulated existence of this earlier event, however, requires further validation. If the two-earthquake scenario is realistic, then the successive ruptures may have occurred in close intervals and were sourced on adjacent segments that overlapped at the trench site. Rupture(s) identified in the trench closely correlate with two damaging earthquakes of 1255 and 1344 reported from Nepal. The present study suggests that the frontal thrust in central Himalaya may have remained seismically inactive during the last similar to 700years. Considering this long elapsed time, a great earthquake may be due in the region.