17 resultados para Climate-Vegetation Relationships
em Indian Institute of Science - Bangalore - Índia
Resumo:
A terrestrial biosphere model with dynamic vegetation capability, Integrated Biosphere Simulator (IBIS2), coupled to the NCAR Community Atmosphere Model (CAM2) is used to investigate the multiple climate-forest equilibrium states of the climate system. A 1000-year control simulation and another 1000-year land cover change simulation that consisted of global deforestation for 100 years followed by re-growth of forests for the subsequent 900 years were performed. After several centuries of interactive climate-vegetation dynamics, the land cover change simulation converged to essentially the same climate state as the control simulation. However, the climate system takes about a millennium to reach the control forest state. In the absence of deep ocean feedbacks in our model, the millennial time scale for converging to the original climate state is dictated by long time scales of the vegetation dynamics in the northern high latitudes. Our idealized modeling study suggests that the equilibrium state reached after complete global deforestation followed by re-growth of forests is unlikely to be distinguishable from the control climate. The real world, however, could have multiple climate-forest states since our modeling study is unlikely to have represented all the essential ecological processes (e. g. altered fire regimes, seed sources and seedling establishment dynamics) for the reestablishment of major biomes.
Resumo:
We make an assessment of the impact of projected climate change on forest ecosystems in India. This assessment is based on climate projections of the Regional Climate Model of the Hadley Centre (HadRM3) and the dynamic global vegetation model IBIS for A2 and B2 scenarios. According to the model projections, 39% of forest grids are likely to undergo vegetation type change under the A2 scenario and 34% under the B2 scenario by the end of this century. However, in many forest dominant states such as Chattisgarh, Karnataka and Andhra Pradesh up to 73%, 67% and 62% of forested grids are projected to undergo change. Net Primary Productivity (NPP) is projected to increase by 68.8% and 51.2% under the A2 and B2 scenarios, respectively, and soil organic carbon (SOC) by 37.5% for A2 and 30.2% for B2 scenario. Based on the dynamic global vegetation modeling, we present a forest vulnerability index for India which is based on the observed datasets of forest density, forest biodiversity as well as model predicted vegetation type shift estimates for forested grids. The vulnerability index suggests that upper Himalayas, northern and central parts of Western Ghats and parts of central India are most vulnerable to projected impacts of climate change, while Northeastern forests are more resilient. Thus our study points to the need for developing and implementing adaptation strategies to reduce vulnerability of forests to projected climate change.
Resumo:
Quantifying distributional behavior of extreme events is crucial in hydrologic designs. Intensity Duration Frequency (IDF) relationships are used extensively in engineering especially in urban hydrology, to obtain return level of extreme rainfall event for a specified return period and duration. Major sources of uncertainty in the IDF relationships are due to insufficient quantity and quality of data leading to parameter uncertainty due to the distribution fitted to the data and uncertainty as a result of using multiple GCMs. It is important to study these uncertainties and propagate them to future for accurate assessment of return levels for future. The objective of this study is to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCM models using Bayesian approach. Posterior distribution of parameters is obtained from Bayes rule and the parameters are transformed to obtain return levels for a specified return period. Markov Chain Monte Carlo (MCMC) method using Metropolis Hastings algorithm is used to obtain the posterior distribution of parameters. Twenty six CMIP5 GCMs along with four RCP scenarios are considered for studying the effects of climate change and to obtain projected IDF relationships for the case study of Bangalore city in India. GCM uncertainty due to the use of multiple GCMs is treated using Reliability Ensemble Averaging (REA) technique along with the parameter uncertainty. Scale invariance theory is employed for obtaining short duration return levels from daily data. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Despite high vulnerability, the impact of climate change on Himalayan ecosystem has not been properly investigated, primarily due to the inadequacy of observed data and the complex topography. In this study, we mapped the current vegetation distribution in Kashmir Himalayas from NOAA AVHRR and projected it under A1B SRES, RCP-4.5 and RCP-8.5 climate scenarios using the vegetation dynamics model-IBIS at a spatial resolution of 0.5A degrees. The distribution of vegetation under the changing climate was simulated for the 21st century. Climate change projections from the PRECIS experiment using the HADRM3 model, for the Kashmir region, were validated using the observed climate data from two observatories. Both the observed as well as the projected climate data showed statistically significant trends. IBIS was validated for Kashmir Himalayas by comparing the simulated vegetation distribution with the observed distribution. The baseline simulated scenario of vegetation (1960-1990), showed 87.15 % agreement with the observed vegetation distribution, thereby increasing the credibility of the projected vegetation distribution under the changing climate over the region. According to the model projections, grasslands and tropical deciduous forests in the region would be severely affected while as savannah, shrubland, temperate evergreen broadleaf forest, boreal evergreen forest and mixed forest types would colonize the area currently under the cold desert/rock/ice land cover types. The model predicted that a substantial area of land, presently under the permanent snow and ice cover, would disappear by the end of the century which might severely impact stream flows, agriculture productivity and biodiversity in the region.
Resumo:
Biogeochemical and hydrological cycles are currently studied on a small experimental forested watershed (4.5 km(2)) in the semi-humid South India. This paper presents one of the first data referring to the distribution and dynamics of a widespread red soil (Ferralsols and Chromic Luvisols) and black soil (Vertisols and Vertic intergrades) cover, and its possible relationship with the recent development of the erosion process. The soil map was established from the observation of isolated soil profiles and toposequences, and surveys of soil electromagnetic conductivity (EM31, Geonics Ltd), lithology and vegetation. The distribution of the different parts of the soil cover in relation to each other was used to establish the dynamics and chronological order of formation. Results indicate that both topography and lithology (gneiss and amphibolite) have influenced the distribution of the soils. At the downslope, the following parts of the soil covers were distinguished: i) red soil system, ii) black soil system, iii) bleached horizon at the top of the black soil and iv) bleached sandy saprolite at the base of the black soil. The red soil is currently transforming into black soil and the transformation front is moving upslope. In the bottom part of the slope, the chronology appears to be the following: black soil > bleached horizon at the top of the black soil > streambed > bleached horizon below the black soil. It appears that the development of the drainage network is a recent process, which was guided by the presence of thin black soil with a vertic horizon less than 2 in deep. Three distinctive types of erosional landforms have been identified: 1. rotational slips (Type 1); 2. a seepage erosion (Type 2) at the top of the black soil profile; 3. A combination of earthflow and sliding in the non-cohesive saprolite of the gneiss occurs at midslope (Type 3). Types 1 and 2 erosion are mainly occurring downslope and are always located at the intersection between the streambed and the red soil-black soil contact. Neutron probe monitoring, along an area vulnerable to erosion types 1 and 2, indicates that rotational slips are caused by a temporary watertable at the base of the black soil and within the sandy bleached saprolite, which behaves as a plane of weakness. The watertable is induced by the ephemeral watercourse. Erosion type 2 is caused by seepage of a perched watertable, which occurs after swelling and closing of the cracks of the vertic clay horizon and within a light textured and bleached horizon at the top of black soil. Type 3 erosion is not related to the red soil-black soil system but is caused by the seasonal seepage of saturated throughflow in the sandy saprolite of the gneiss occurring at midslope. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Clean Development Mechanism (CDM), Article 12 of the Kyoto Protocol allows Afforestation and Reforestation (A/R) projects as mitigation activities to offset the CO2 in the atmosphere whilst simultaneously seeking to ensure sustainable development for the host country. The Kyoto Protocol was ratified by the Government of India in August 2002 and one of India's objectives in acceding to the Protocol was to fulfil the prerequisites for implementation of projects under the CDM in accordance with national sustainable priorities. The objective of this paper is to assess the effectiveness of using large-scale forestry projects under the CDM in achieving its twin goals using Karnataka State as a case study. The Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Model is used to observe the effect of varying carbon prices on the land available for A/R projects. The model is coupled with outputs from the Lund-Potsdam-Jena (LPJ) Dynamic Global Vegetation Model to incorporate the impacts of temperature rise due to climate change under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1B and B1. With rising temperatures and CO2, vegetation productivity is increased under A2 and A1B scenarios and reduced under B1. Results indicate that higher carbon price paths produce higher gains in carbon credits and accelerate the rate at which available land hits maximum capacity thus acting as either an incentive or disincentive for landowners to commit their lands to forestry mitigation projects. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, we model the long-term effect of climate change on commercially important teak (Tectona grandis) and its productivity in India. This modelling assessment is based on climate projections of the regional climate model of the Hadley Center (HadRM3) and the dynamic vegetation model, IBIS. According to the model projections, 30% of teak grids in India are vulnerable to climate change under both A2 and B2 SRES scenarios because the future climate may not be optimal for teak at these grids. However, the net primary productivity and biomass are expected to increase because of elevated levels of CO2. Given these directions of likely impacts, it is crucial to further investigate the climate change impacts on teak and incorporate such findings into long-term teak plantation programs. This study also demonstrates the feasibility and limitations of assessing the impact of projected climate change at the species level in the tropics.
Resumo:
Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m(2)/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (-5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (-2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS-a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.
Resumo:
We examine the potential for adaptation to climate change in Indian forests, and derive the macroeconomic implications of forest impacts and adaptation in India. The study is conducted by integrating results from the dynamic global vegetation model IBIS and the computable general equilibrium model GRACE-IN, which estimates macroeconomic implications for six zones of India. By comparing a reference scenario without climate change with a climate impact scenario based on the IPCC A2-scenario, we find major variations in the pattern of change across zones. Biomass stock increases in all zones but the Central zone. The increase in biomass growth is smaller, and declines in one more zone, South zone, despite higher stock. In the four zones with increases in biomass growth, harvest increases by only approximately 1/3 of the change in biomass growth. This is due to two market effects of increased biomass growth. One is that an increase in biomass growth encourages more harvest given other things being equal. The other is that more harvest leads to higher supply of timber, which lowers market prices. As a result, also the rent on forested land decreases. The lower prices and rent discourage more harvest even though they may induce higher demand, which increases the pressure on harvest. In a less perfect world than the model describes these two effects may contribute to an increase in the risk of deforestation because of higher biomass growth. Furthermore, higher harvest demands more labor and capital input in the forestry sector. Given total supply of labor and capital, this increases the cost of production in all the other sectors, although very little indeed. Forestry dependent communities with declining biomass growth may, however, experience local unemployment as a result.
Resumo:
1. Recovery of rainforest bird community structure and composition, in relation to forest succession after slash-and-burn shifting cultivation or jhum was studied in Mizoram, north-east India. Replicate fallow sites abandoned after shifting cultivation 1, 5, 10, 25 and approximate to 100 years ago, were compared with primary evergreen and semi-evergreen forest using transect and quadrat sampling. 2. Vegetation variables such as woody plant species richness, tree density and vertical stratification increased with fallow age in a rapid. nun-linear, asymptotic manner. Principal components analysis of vegetation variables summarized 92.8% of the variation into two axes: PC1 reflecting forest development and woody plant succession (variables such as tree density, woody plant species richness), and PC2 depicting bamboo density, which increased from 1 to 25 years and declined thereafter. 3. Bird species richness, abundance and diversity, increased rapidly and asymptotically during succession paralleling vegetation recovery as shown by positive correlations with fallow age and PC1 scores of sites. Bamboo density reflected by PC2 had a negative effect on bird species richness and abundance. 4. The bird community similarity (Morisita index) of sites with primary forest also increased asymptotically with fallow age indicating sequential species turnover during succession. Bird community similarity of sites with primary forest (or between sites) was positively correlated with both physiognomic and floristic similarities with primary forest (or between sites). 5. The number of bird species in guilds associated with forest development and woody plants (canopy insectivores, frugivores: bark feeders) was correlated with PCI scores of the sites. Species in other guilds (e. g. granivores, understorey insectivores) appeared to dominate during early and mid-succession. 6. The non-linear relationships imply that fallow periods less than a threshold of 25 years for birds, and about 50-75 years for woody plants, are likely to cause substantial community alteration. 7. As 5-10-year rotation periods or jhum cycles prevail in many parts of north-east India. there is a need to protect and conserve tracts of late-successional and primary forest.
Resumo:
An assessment of the impact of projected climate change on forest ecosystems in India based on climate projections of the Regional Climate Model of the Hadley Centre (HadRM3) and the global dynamic vegetation model IBIS for A1B scenario is conducted for short-term (2021-2050) and long-term (2071-2100) periods. Based on the dynamic global vegetation modelling, vulnerable forested regions of India have been identified to assist in planning adaptation interventions. The assessment of climate impacts showed that at the national level, about 45% of the forested grids is projected to undergo change. Vulnerability assessment showed that such vulnerable forested grids are spread across India. However, their concentration is higher in the upper Himalayan stretches, parts of Central India, northern Western Ghats and the Eastern Ghats. In contrast, the northeastern forests, southern Western Ghats and the forested regions of eastern India are estimated to be the least vulnerable. Low tree density, low biodiversity status as well as higher levels of fragmentation, in addition to climate change, contribute to the vulnerability of these forests. The mountainous forests (sub-alpine and alpine forest, the Himalayan dry temperate forest and the Himalayan moist temperate forest) are susceptible to the adverse effects of climate change. This is because climate change is predicted to be larger for regions that have greater elevations.
Resumo:
This study in Western Ghats, India, investigates the relation between nesting sites of ants and a single remotely sensed variable: the Normalised Difference Vegetation Index (NDVI). We carried out sampling in 60 plots each measuring 30 x 30 m and recorded nest sites of 13 ant species. We found that NDVI values at the nesting sites varied considerably between individual species and also between the six functional groups the ants belong to. The functional groups Cryptic Species, Tropical Climate Specialists and Specialist Predators were present in regions with high NDVI whereas Hot Climate Specialists and Opportunists were found in sites with low NDVI. As expected we found that low NDVI values were associated with scrub jungles and high NDVI values with evergreen forests. Interestingly, we found that Pachycondyla rufipes, an ant species found only in deciduous and evergreen forests, established nests only in sites with low NDVI (range = 0.015 - 0.1779). Our results show that these low NDVI values in deciduous and evergreen forests correspond to canopy gaps in otherwise closed deciduous and evergreen forests. Subsequent fieldwork confirmed the observed high prevalence of P. rufipes in these NDVI-constrained areas. We discuss the value of using NDVI for the remote detection and distinction of ant nest sites.
Resumo:
Analysis of climate change impacts on streamflow by perturbing the climate inputs has been a concern for many authors in the past few years, but there are few analyses for the impacts on water quality. To examine the impact of change in climate variables on the water quality parameters, the water quality input variables have to be perturbed. The primary input variables that can be considered for such an analysis are streamflow and water temperature, which are affected by changes in precipitation and air temperature, respectively. Using hypothetical scenarios to represent both greenhouse warming and streamflow changes, the sensitivity of the water quality parameters has been evaluated under conditions of altered river flow and river temperature in this article. Historical data analysis of hydroclimatic variables is carried out, which includes flow duration exceedance percentage (e.g. Q90), single low- flow indices (e.g. 7Q10, 30Q10) and relationships between climatic variables and surface variables. For the study region of Tunga-Bhadra river in India, low flows are found to be decreasing and water temperatures are found to be increasing. As a result, there is a reduction in dissolved oxygen (DO) levels found in recent years. Water quality responses of six hypothetical climate change scenarios were simulated by the water quality model, QUAL2K. A simple linear regression relation between air and water temperature is used to generate the scenarios for river water temperature. The results suggest that all the hypothetical climate change scenarios would cause impairment in water quality. It was found that there is a significant decrease in DO levels due to the impact of climate change on temperature and flows, even when the discharges were at safe permissible levels set by pollution control agencies (PCAs). The necessity to improve the standards of PCA and develop adaptation policies for the dischargers to account for climate change is examined through a fuzzy waste load allocation model developed earlier. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Carbon footprint (CF) refers to the total amount of carbon dioxide and its equivalents emitted due to various anthropogenic activities. Carbon emission and sequestration inventories have been reviewed sector-wise for all federal states in India to identify the sectors and regions responsible for carbon imbalances. This would help in implementing appropriate climate change mitigation and management strategies at disaggregated levels. Major sectors of carbon emissions in India are through electricity generation, transport, domestic energy consumption, industries and agriculture. A majority of carbon storage occurs in forest biomass and soil. This paper focuses on the statewise carbon emissions (CO2. CO and CH4), using region specific emission factors and statewise carbon sequestration capacity. The estimate shows that CO2, CO and CH4 emissions from India are 965.9, 22.5 and 16.9 Tg per year, respectively. Electricity generation contributes 35.5% of total CO2 emission, which is followed by the contribution from transport. Vehicular transport exclusively contributes 25.5% of total emission. The analysis shows that Maharashtra emits higher CO2, followed by Andhra Pradesh, Uttar Pradesh, Gujarat, Tamil Nadu and West Bengal. The carbon status, which is the ratio of annual carbon storage against carbon emission, for each federal state is computed. This shows that small states and union territories (UT) like Arunachal Pradesh, Mizoram and Andaman and Nicobar Islands, where carbon sequestration is higher due to good vegetation cover, have carbon status > 1. Annually, 7.35% of total carbon emissions get stored either in forest biomass or soil, out of which 34% is in Arunachal Pradesh, Madhya Pradesh, Chhattisgarh and Orissa. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Water is the most important medium through which climate change influences human life. Rising temperatures together with regional changes in precipitation patterns are some of the impacts of climate change that have implications on water availability, frequency and intensity of floods and droughts, soil moisture, water quality, water supply and water demands for irrigation and hydropower generation. In this article we provide an introduction to the emerging field of hydrologic impacts of climate change with a focus on water availability, water quality and irrigation demands. Climate change estimates on regional or local spatial scales are burdened with a considerable amount of uncertainty, stemming from various sources such as climate models, downscaling and hydrological models used in the impact assessments and uncertainty in the downscaling relationships. The present article summarizes the recent advances on uncertainty modeling and regional impacts of climate change for the Mahanadi and Tunga-Bhadra Rivers in India.