6 resultados para Cliff-dwellings

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis involving a transformation of the velocity potential and a Fourier Sine Transform technique is described to study the effect of surface tension on incoming surface waves against a vertical cliff with a periodic wall perturbation. Known results are recovered as particular cases of the general problem considered. An analytical expression is derived for the surface elevation, at far distances from the shore-line, by using Watson's lemma and a representative table of numerical values of the coefficients of the resulting asymptotic expansion is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizing the commutativity property of the Cartesian coordinate differential operators arising in the boundary conditions associated with the propagation of surface water waves against a vertical cliff, under the assumptions of linearized theory, the problem of obliquely incident surface waves is considered for solution. The case of normal incidence, handled by previous workers follow as a particular limiting case of the present problem, which exhibits a source/sink type behavior of the velocity potential at the shore-line. An independent method of attack is also presented to handle the case of normal incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems of obliquely incident surface water waves against a vertical cliff have been handled in both the cases of water of infinite as well as finite depth by straightforward uses of appropriate Havelock-type expansion theorems. The logarithmic singularity along the shore-line has been incorporated in a direct manner, by suitably representing the Dirac's delta function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugganahalli, a rural vernacular community in a warm-humid region in South India, is under transition towards adopting modern construction practices. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete (RCC)/tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Vernacular architecture evolves adopting local resources in response to the local climate adopting passive solar designs. This paper investigates the effectiveness of passive solar elements on the indoor thermal comfort by adopting modern climate-responsive design strategies. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Age-old traditional design considerations were found to concur with modern understanding into bio-climatic response and climate-responsiveness. Modern transitions were found to increase the average indoor temperatures in excess of 7 degrees C. Such transformations tend to shift the indoor conditions to a psychrometric zone that is likely to require active air-conditioning. Also, the surveyed thermal sensation votes were found to lie outside the extended thermal comfort boundary for hot developing countries provided by Givoni in the bio-climatic chart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rural settlements in Karnataka in India predominantly use locally available resources to build their dwelling units. The houses are constructed either by the villagers themselves or by local masons skilled in traditional architecture. However, traditional houses and lifestyle are slowly giving way to modern concrete dwellings and a new lifestyle. To analyse this trend of transition to modern dwellings in rural settlements, a case study was conducted in three villages near the city of Bengaluru in Karnataka. The present article discusses this transition in the context of sustainable well-being of rural settlements.