48 resultados para Cleopatra, Queen of Egypt, d. 30 B.C.
em Indian Institute of Science - Bangalore - Índia
Resumo:
(I)Lantadene-B: C35H52O5,M r =552.80, MonoclinicC2,a=25.65(1),b=6.819(9),c=18.75(1) Å,beta=100.61(9),V=3223(5) Å3,Z=4,D x =1.14 g cm–3 CuKagr (lambda=1.5418A),mgr=5.5 cm–1,F(000)=1208,R=0.118,wR=0.132 for 1527 observed reflections withF o ge2sgr(F o ). (II)Lantadene-C: C35H54O5·CH3OH,Mr=586.85, Monoclinic,P21,a=9.822(3),b=10.909(3),c=16.120(8)Å,beta=99.82(4),V=1702(1)Å3,Z=2,D x =1.145 g cm–3, MoKagr (lambda=0.7107Å), mgr=0.708 cm–1 F(000)=644,R=0.098, wR=0.094 for 1073 observed reflections. The rings A, B, C, D, and E aretrans, trans, trans, cis fused and are in chair, chair, sofa, half-chair, chair conformations, respectively, in both the structures. In the unit cell the molecules are stabilized by O-HctdotO hydrogen bonds in both the structures, however an additional C-HctdotO interaction is observed in the case of Lantadene-C.
Resumo:
Stoichiometric and non-stoichiometric powder mixtures of Ti-B4C and Ti-C with 1 wt% Ni were reactively hot pressed at 40 MPa, 1200 degrees C for 30 min. In both systems, the combined presence of Ni and non-stoichiometry enabled complete densification. While in Ti-C, non-stoichiometry by itself plays a significant role in promoting densification, the formation of intermediate borides in Ti-B4C powder mixtures requires the additional presence of Ni which promotes full reaction through the formation of a transient liquid as established previously in Ti-BN powder mixtures.
Resumo:
The possible conformations of sialic acid were analysed using semi-empirical potential functions. The solid state conformation has approx. 0.2 kcal/mol higher energy than the minimum energy conformation. These studies suggest that in solution sialic acid may exist preponderantly in two different conformations which differ in the orientation of the terminal hydroxymethyl group of glycerol side-chain. The present model is consistent with 1H- and 13C-NMR data, but differs from the earlier models.
Resumo:
Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.
Resumo:
Pivaloyl-D-prolyl-L-prolyl-L-analyl-N-methylam~de (I), C1UH32N40c4r,y stallizes in the orthorhombic space group P21212,w ith four molecules in a unit cell of dimensions a = 9.982 (l),b = 10.183 (3), c = 20.746 (2)A . The structure has been refined to R 0.048 for 1 745 observed reflections. All the peptide bonds in the molecule are trans and both the prolyl residues are in the CY-exo-conformation. The molecule assumes a highly folded conformation in which a Type II' DL bend is followed by a Type I LL bend, both stabilised by intramolecular 4 + 1 hydrogen bonds. This conformation, which has been observed for the first time, is of interest in relation to the structure of gramicidin S.
Resumo:
Thermodynamics of Cr-Mn alloys have been studied by Eremenko et al (l) using a fused salt e.m.f.technique. Their results indicate positive deviations from ideality at 1023 K. Kaufman (2) has independently estimated negative enthaipy and excess entropy for the b.c.c. Cr-Mn alloys, such that at high temperatures, the entropy term predominates over the enthalpy term giving positive deviations from ideality. Recently the thermodynamic properties of the alloys have been measured by 3acob (3) using a Knudsen cell technique in the temperature range of 1200 to 1500 K. The results indicate mild negative deviations from ideality over the entire composition range. Because of the differences in the reported results and Mn being a volatile component in the alloys which leads to surface depletion under a dynamic set up, an isopiestic technique is used to measure the properties of the alloys.
Resumo:
We present a first-principles theory of the equilibrium b.c.c.-f.c.c. interface at coexistence using the density functional method. We assume that the interfacial region has local body-centred tetragonal (b.c.t.) symmetry and predict typical interfacial widths to be of order 2 to 3 lattice spacings with typical energies close to 0.05 J/m2. These quantities are in good agreement with laboratory measurements on coherent interfaces.
Resumo:
C17H17N3O2, M(r) = 295.34, orthorhombic, P2(1)2(1)2(1), a = 7.659 (1), b = 12.741 (1), c = 15.095 (1) angstrom, V = 1473.19 (2) angstrom 3, Z = 4, D(m) = 1.33, D(x) = 1.32 Mg m-3, lambda(Cu K-alpha) = 1.5418 angstrom, mu = 0.68 mm-1, F(000) = 624, T = 295 K, R = 0.031 for 1549 unique observed reflections with I > 2.5-sigma(I). The seven-membered heterocyclic ring adopts a boat conformation flattened at the nitroso end of the ring. The substituent phenyl rings occupy pseudo-axial positions and the nitroso group is coplanar with the C(2), N(1), C(7) plane of the central ring. The crystal structure is stabilized by intermolecular N-H...O and weak C-H...O hydrogen bonds.
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.
Resumo:
Single crystal X-ray structural analysis of a septanoside, namely, n-pentyl-2-chloro-2-deoxy sept-3-uloside (1) provides many finer details of the molecular structure, in addition to its preferred twist-chair conformation, namely, (TC3,4)-T-5,6 conformation. Structural analysis reveals a dense network of O-H...O, C-H...O and van der Waals interactions that stabilize interdigitized, planar bi-layer structure of the crystal lattice. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Rates of hydrogen/deuterium (H/D) exchange determined by H-1 NMR spectroscopy are utilized to derive the strength of hydrogen bonds and to monitor the electronic effects in the site-specific halogen substituted benzamides and anilines. The theoretical fitting of the time dependent variation of the integral areas of H-1 NMR resonances to the first order decay function permitted the determination of HID exchange rate constants (k) and their precise half-lives (t(1/2)) with high degree of reproducibility. The comparative study also permitted the unambiguous determination of relative strength of hydrogen bonds and the contribution from electronic effects on the HID exchange rate. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
M r= 470.46, rhombohedral, R3, a =8.710(4)A, a=91.10(3) o, V= 660.4 (9) A 3, Z= 1,D m= 1.170 (flotation in KI solution), D x=1.183 Mg m -a, Mo Kct, 2 = 0.7107/~,, /t =0.033 mm -1, F(000) - 248.0, T= 293 K, R -- 4.6%(481 unique reflections). The molecule has C a symmetry and is propeller shaped, the angle of twist about the B-C bond being 41.5 (7) °. The space group being chiral, this is yet another example of spontaneous resolution. The results of a thermal-motion analysis are discussed.
Resumo:
The Watson-Crick type of base pairing is considered to be mandatory for the formation of duplex DNA. However, conformational calculations carried out in our laboratory, have shown that some combinations of backbone torsion angles and sugar pucker lead to duplexes with Hoogsteen type of base pairing also. Here we present the results of energy calculations performed on A-T containing doublet sequences in the D-form with both Hoogsteen and Watson-Crick type of base pairing and the 3 viable models for the A-T containing polynucleotide duplex poly[d(A-T)].