46 resultados para Clearance
em Indian Institute of Science - Bangalore - Índia
Resumo:
Pin joints in structures are designed for interference, push or clearance fits. That is, the diameter of the pin is made greater than, equal to or less than the hole diameter. Consider an interference fit pin in a plate subjected to a continuously increasing in-plane load.
Resumo:
The analysis of clearance fit joints falls within the realm of mixed boundary problems with moving boundaries. In this paper, this problem is solved by a simple continuum method of analysis applying an inverse technique; the region of contact is specified and the corresponding causative load is evaluated. Illustrations are given for a rigid clearance fit pin in a large elastic plate with smooth zero-shear interface between pin and plate, under biaxial plate stress at infinity and due to load transfer through pin.
Resumo:
Several H-2 defined cell lines were examined for their ability to support infection and replication of Japanese encephalitis virus (JEV) before their use in in vitro and in vivo stimulation protocols for generating cytotoxic T lymphocytes (CTLs) against JEV. Among II different cell lines tested, two H-2(d) macrophage tumour lines (P388D1, RAW 264.7), an H-2(d) hybridoma (Sp2/0), an H-2K(k)D(d) neuroblastoma (Neuro 2a), and H-2(k) fibroblast cell line (L929) were found to support JEV infection and replication. These cell lines were used to generate anti-JEV CTLs by using in vivo immunization followed by in vitro stimulation of BALB/c mice. We observed that not only syngeneic and allogeneic infected cells but also JEV-infected xenogeneic cells could prime BALB/c mice for the generation of JEV-specific CTLs upon subsequent in vitro stimulation of splenocytes with JEV-infected syngeneic cells. Although infected xenogeneic cells were used for immunization, the anti-JEV effecters that were generated lysed infected syngeneic targets but not JEV-infected xenogeneic or allogeneic target cells in a 5h Cr-51 release assay. These anti-JEV effecters recognized syngeneic target cells infected with West Nile virus to a lesser extent and were shown to be Lyt-2.2(+) T cells. The results of unlabelled cold target competition studies suggested alterations in the cell surface expression of viral antigenic determinants recognized by these CTLs. We further demonstrate that the JEV-specific CTLs generated could virtually block the release of infectious virus particles from infected P388D1 and Neuro 2a cells in vitro.
Resumo:
Measurements of the three-dimensional flow field entering and leaving a mixed flow pump of non-dimensional specific speed k = 1.89 [N-s = 100 r/min (metric)] are discussed as a function of flowrate. Flow reversal at inlet at reduced flows is seen to result in abnormally high total pressures in the casing region, but causes no noticeable discontinuities on the head-flow characteristics. Inlet prerotation is associated with the transport of angular momentum by the reversal eddy and begins with the initiation of flow reversal.
Resumo:
Measurements in a mixed flow pump of non-dimensional specific speed k = 1.89[N-S = 100 r/min (metric)] are analysed to give loss distribution and local hydraulic efficiencies at different flowrates and values of tip clearance. Fairly close agreement is obtained between the relative flow angles leaving the blading as predicted by simple deviation and slip models and derived from the measurements. The head developed is broken up into two parts: that contributed by Coriolis action and that associated with blade circulation. It is suggested that lift coefficients based on blade circulation are of limited value in selecting blade profiles. The variation of pump efficiency with tip clearance is greater than that reported for centrifugal pumps.
Resumo:
P>Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the beta' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the beta' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the beta' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.
Resumo:
Japanese encephalitis virus (JEV) is a positive stranded RNA virus that belongs to the flavivirus group, JEV infection damages the central nervous system (CNS) and is one of the main causative agents of acute encephalitis, H-2 restricted virus-specific cytotoxic T lymphocytes (CTL) have been generated specifically against JEV in our laboratory and these CTL have been shown to protect mice against lethal challenge with JEV, Virus replication was found to be inhibited in the brains of animals that mere adoptively transferred with JEV specific CTL as revealed by immunohistological staining as,veil as viral plaque assays. We further show that virus specific CTL could be recovered from such protected mice as long as 45 days after adoptive transfer.
Resumo:
Glycodelin A (GdA), is a lipocalin with an immunomodulatory role, secreted by the endometrium under progesterone regulation and proposed to play a role in protecting the fetus from maternal immune attack. Glycodelin A has an inhibitory effect on the proliferation of T cells and B cells and also on the activity of natural killer cells. We have earlier demonstrated that the inhibitory effect of glycodelin A on T cell proliferation is due to apoptosis induced in these cells through the caspase-dependent intrinsic mitochondrial pathway. Studies reported until now have shown that glycodelin modulates the adaptive immune responses. We, therefore, decided to look at its effect, if any, on the innate immune system. The effect of glycodelin on monocytes was studied using human monocytic cell lines, THP1 and U937, and primary human monocytes as model systems. We demonstrated that glycodelin inhibited the proliferation of THP1 and U937 and induced apoptosis in these cells as well as in primary monocytes. We found that this signaling was caspase-independent but followed the intrinsic mitochondrial pathway of apoptosis. No effect of glycodelin was seen on the phagocytic ability of monocytes post-differentiation into macrophages. These observations suggest that, at the fetomaternal interface, glycodelin plays a protective role by deleting the monocytes that could become pro-inflammatory. Importantly, leaving the macrophages untouched to carry on with efficient clearance of the apoptotic cells.
Resumo:
Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (Pmom) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg2+-dependent fashion. Mg2+-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg2+, to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E26X10D37X2D40) present toward the N-terminus of the protein are found to be important for Mg2+ ion binding. Mutations in these residues lead to altered Mg2+-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg2+ is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.
Resumo:
The effects of tangential friction at pin—hole interfaces are appropriately modelled for the analysis of fasteners in large composite (orthotropic) plate loaded along its edges. The pin—hole contact could be of interference, clearance or neat fit. When the plate load is monotonically increased, interference fits give rise to receding contact, whereas clearance fits result in advancing contact. In either case, the changing contact situations lead to non-linear moving boundary value problems. The neat fit comes out as a special case in which the contact and separation regions are invariant with the applied load level and so the problem remains linear. The description of boundary conditions in the presence of tangential friction, will depend on whether the problem is one of advancing or receding contact, advancing contact presenting a special problem. A model is developed for the limiting case of a rigid pin and an ideally rough interface (infinitely large friction coefficient). The non-linearity resulting from the continuously varying proportions of contact and separation at the interface, is handled by an “Inverse Formulation” which was successfully applied earlier by the authors for smooth (zero friction) interfacial conditions. The additional difficulty introduced by advancing contact is handled by adopting a “Marching Solution”. The modelling and the procedure are illustrated in respect of symmetric plate load cases. Numerical results are presented bringing out the effects of interfacial friction and plate orthotropy on load-contact relations and plate stresses.
Resumo:
A continuum method of analysis is presented in this paper for the problem of a smooth rigid pin in a finite composite plate subjected to uniaxial loading. The pin could be of interference, push or clearance fit. The plate is idealized to an orthotropic sheet. As the load on the plate is progressively increased, the contact along the pin-hole interface is partial above certain load levels in all three types of fit. In misfit pins (interference or clearance), such situations result in mixed boundary value problems with moving boundaries and in all of them the arc of contact and the stress and displacement fields vary nonlinearly with the applied load. In infinite domains similar problems were analysed earlier by ‘inverse formulation’ and, now, the same approach is selected for finite plates. Finite outer domains introduce analytical complexities in the satisfaction of boundary conditions. These problems are circumvented by adopting a method in which the successive integrals of boundary error functions are equated to zero. Numerical results are presented which bring out the effects of the rectangular geometry and the orthotropic property of the plate. The present solutions are the first step towards the development of special finite elements for fastener joints.
Resumo:
The problem of misfit (interference or clearance) pin in a large orthotropic plate was solved earlier by the authors for biaxial loading in the principal directions of orthotropy. Here, a more general case of arbitrarily oriented loading is considered. The most important aspect of the problem studied is the partial contact at the pin-hole interface. The solution is obtained by extending the use of ‘inverse technique’ which was successfully applied earlier by the authors to problems of pins in isotropic and orthotropic domains. The loss of symmetry because of the arbitrary orientation of loading makes the problem more complex. Additional parameters are then involved in the inversion of the problem for the solution. Numerical results are presented primarily for a smooth interference fit pin in a typical orthotropic plate.
Resumo:
A special finite element (FASNEL) is developed for the analysis of a neat or misfit fastener in a two-dimensional metallic/composite (orthotropic) plate subjected to biaxial loading. The misfit fasteners could be of interference or clearance type. These fasteners, which are common in engineering structures, cause stress concentrations and are potential sources of failure. Such cases of stress concentration present considerable numerical problems for analysis with conventional finite elements. In FASNEL the shape functions for displacements are derived from series stress function solutions satisfying the governing difffferential equation of the plate and some of the boundary conditions on the hole boundary. The region of the plate outside FASNEL is filled with CST or quadrilateral elements. When a plate with a fastener is gradually loaded the fastener-plate interface exhibits a state of partial contact/separation above a certain load level. In misfit fastener, the extent of contact/separation changes with applied load, leading to a nonlinear moving boundary problem and this is handled by FASNEL using an inverse formulation. The analysis is developed at present for a filled hole in a finite elastic plate providing two axes of symmetry. Numerical studies are conducted on a smooth rigid fastener in a finite elastic plate subjected to uniaxial loading to demonstrate the capability of FASNEL.
Resumo:
The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.
Resumo:
Friction characteristics of journal bearings made from cast graphic aluminum particulate composite alloy were determined under mixed lubrication and compared with those of the base alloy (without graphite) and leaded phosphor bronze. All three materials ran without seizure while the performance of the particulate composite and leaded phosphor bronze improved with running. Temperature rise in the journal bearing under mixed/boundary lubrication was also measured. It was found that with 0.3D/1000 to 1.5D/1000 clearance and a low lubrication rate (typical value for a bearing of diameter 35 mm × length 35 mm is 80 mm3/min) and at a PV value of 73 × 106 Nm m−2 min−1 graphitic aluminium alloy journal bearings operate satisfactorily without seizure and excessive temperature rise. In comparison, the bronze bearings, with all the other parameters remaining the same, could not run without excessive temperature rise at clearances below D/1000 at lubrication rates lower than 200 mm3/min