4 resultados para Cival penalties

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the modern business environment, meeting due dates and avoiding delay penalties are very important goals that can be accomplished by minimizing total weighted tardiness. We consider a scheduling problem in a system of parallel processors with the objective of minimizing total weighted tardiness. Our aim in the present work is to develop an efficient algorithm for solving the parallel processor problem as compared to the available heuristics in the literature and we propose the ant colony optimization approach for this problem. An extensive experimentation is conducted to evaluate the performance of the ACO approach on different problem sizes with the varied tardiness factors. Our experimentation shows that the proposed ant colony optimization algorithm is giving promising results compared to the best of the available heuristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we determine packet scheduling policies for efficient power management in Energy Harvesting Sensors (EHS) which have to transmit packets of high and low priorities over a fading channel. We assume that incoming packets are stored in a buffer and the quality of service for a particular type of message is determined by the expected waiting time of packets of that type of message. The sensors are constrained to work with the energy that they garner from the environment. We derive transmit policies which minimize the sum of expected waiting times of the two types of messages, weighted by penalties. First, we show that for schemes with a constant rate of transmission, under a decoupling approximation, a form of truncated channel inversion is optimal. Using this result, we derive optimal solutions that minimize the weighted sum of the waiting times in the different queues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mobile ad hoc networks (MANETs) is one of the successful wireless network paradigms which offers unrestricted mobility without depending on any underlying infrastructure. MANETs have become an exciting and im- portant technology in recent years because of the rapid proliferation of variety of wireless devices, and increased use of ad hoc networks in various applications. Like any other networks, MANETs are also prone to variety of attacks majorly in routing side, most of the proposed secured routing solutions based on cryptography and authentication methods have greater overhead, which results in latency problems and resource crunch problems, especially in energy side. The successful working of these mechanisms also depends on secured key management involving a trusted third authority, which is generally difficult to implement in MANET environ-ment due to volatile topology. Designing a secured routing algorithm for MANETs which incorporates the notion of trust without maintaining any trusted third entity is an interesting research problem in recent years. This paper propose a new trust model based on cognitive reasoning,which associates the notion of trust with all the member nodes of MANETs using a novel Behaviors-Observations- Beliefs(BOB) model. These trust values are used for detec- tion and prevention of malicious and dishonest nodes while routing the data. The proposed trust model works with the DTM-DSR protocol, which involves computation of direct trust between any two nodes using cognitive knowledge. We have taken care of trust fading over time, rewards, and penalties while computing the trustworthiness of a node and also route. A simulator is developed for testing the proposed algorithm, the results of experiments shows incorporation of cognitive reasoning for computation of trust in routing effectively detects intrusions in MANET environment, and generates more reliable routes for secured routing of data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach that can easily incorporate any generic penalty function into the diffuse optical tomographic image reconstruction is introduced to show the utility of nonquadratic penalty functions. The penalty functions that were used include quadratic (l(2)), absolute (l(1)), Cauchy, and Geman-McClure. The regularization parameter in each of these cases was obtained automatically by using the generalized cross-validation method. The reconstruction results were systematically compared with each other via utilization of quantitative metrics, such as relative error and Pearson correlation. The reconstruction results indicate that, while the quadratic penalty may be able to provide better separation between two closely spaced targets, its contrast recovery capability is limited, and the sparseness promoting penalties, such as l(1), Cauchy, and Geman-McClure have better utility in reconstructing high-contrast and complex-shaped targets, with the Geman-McClure penalty being the most optimal one. (C) 2013 Optical Society of America