3 resultados para Ci (Chinese poetry)

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

M r=275.8, monoclinic, P21/a, a= 12.356 (5), b=9.054 (4), c= 14.043 (4) A, t= 100.34 (3) ° , V=1545.5A 3, Z=4, D,,,= 1.14, D x = 1.185 Mg m -3, p(Mo Ka, /l = 0.7107 ]k) = 2.77 mm -1, F(000) = 584.0, T= 293 K, R = 0.053 for 1088 reflections. The four-membered ring is buckled 13.0 ° (0= 167.0°). The azetidinium moiety is linked to the C1- ion through a hydrogen bond [O-H...C1 = 3.166 (5) A].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NDDO-based (AM1) configuration interaction (CI) calculations have been used to calculate the wavelength and oscillator strengths of electronic absorptions in organic molecules and the results used in a sum-over-states treatment to calculate second-order-hyperpolarizabilities. The results for both spectra and hyperpolarizabilities are of acceptable quality as long as a suitable CI-expansion is used. We have found that using an active space of eight electrons in eight orbitals and including all single and pair-double excitations in the CI leads to results that agree well with experiment and that do not change significantly with increasing active space for most organic molecules. Calculated second-order hyperpolarizabilities using this type of CI within a sum-over-states calculation appear to be of useful accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of analyzing influence of various factors affecting individual messages posted in social media. The problem is challenging because of various types of influences propagating through the social media network that act simultaneously on any user. Additionally, the topic composition of the influencing factors and the susceptibility of users to these influences evolve over time. This problem has not been studied before, and off-the-shelf models are unsuitable for this purpose. To capture the complex interplay of these various factors, we propose a new non-parametric model called the Dynamic Multi-Relational Chinese Restaurant Process. This accounts for the user network for data generation and also allows the parameters to evolve over time. Designing inference algorithms for this model suited for large scale social-media data is another challenge. To this end, we propose a scalable and multi-threaded inference algorithm based on online Gibbs Sampling. Extensive evaluations on large-scale Twitter and Face book data show that the extracted topics when applied to authorship and commenting prediction outperform state-of-the-art baselines. More importantly, our model produces valuable insights on topic trends and user personality trends beyond the capability of existing approaches.