24 resultados para Chromatic pitches

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brooks' Theorem says that if for a graph G,Δ(G)=n, then G is n-colourable, unless (1) n=2 and G has an odd cycle as a component, or (2) n>2 and Kn+1 is a component of G. In this paper we prove that if a graph G has none of some three graphs (K1,3;K5−e and H) as an induced subgraph and if Δ(G)greater-or-equal, slanted6 and d(G)<Δ(G), then χ(G)<Δ(G). Also we give examples to show that the hypothesis Δ(G)greater-or-equal, slanted6 can not be non-trivially relaxed and the graph K5−e can not be removed from the hypothesis. Moreover, for a graph G with none of K1,3;K5−e and H as an induced subgraph, we verify Borodin and Kostochka's conjecture that if for a graph G,Δ(G)greater-or-equal, slanted9 and d(G)<Δ(G), then χ(G)<Δ(G).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boxicity (respectively cubicity) of a graph G is the least integer k such that G can be represented as an intersection graph of axis-parallel k-dimensional boxes (respectively k-dimensional unit cubes) and is denoted by box(G) (respectively cub(G)). It was shown by Adiga and Chandran (2010) that for any graph G, cub(G) <= box(G) log(2) alpha(G], where alpha(G) is the maximum size of an independent set in G. In this note we show that cub(G) <= 2 log(2) X (G)] box(G) + X (G) log(2) alpha(G)], where x (G) is the chromatic number of G. This result can provide a much better upper bound than that of Adiga and Chandran for graph classes with bounded chromatic number. For example, for bipartite graphs we obtain cub(G) <= 2(box(G) + log(2) alpha(G)] Moreover, we show that for every positive integer k, there exist graphs with chromatic number k such that for every epsilon > 0, the value given by our upper bound is at most (1 + epsilon) times their cubicity. Thus, our upper bound is almost tight. (c) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The perception of ultraviolet (UV) light by spiders has so far been only demonstrated in salticids. Crab spiders (Thomisidae) hunt mostly on flowers and need to find appropriate hunting sites. Previous studies have shown that some crab spiders that reflect UV light use UV contrast to enhance prey capture. The high UV contrast can be obtained either by modulation of body colouration or active selection of appropriate backgrounds for foraging. We show that crab spiders (Thomisus sp.)hunting on Spathiphyllum plants use chromatic contrast, especially UV contrast, to make themselves attractive to hymenopteran prey. Apart from that, they are able to achieve high UV contrast by active selection of non-UV reflecting surfaces when given a choice of UV-reflecting and non-UV reflecting surfaces in the absence of odour cues. Honeybees (Apis cerana) approached Spathiphyllum plants bearing crab spiders on which the spiders were high UV-contrast targets with greater frequency than those plants on which the UV-contrast of the spiders was low. Thus, crab spiders can perceive UV and may use it to choose appropriate backgrounds to enhance prey capture, by exploiting the attraction of prey such as honeybees to UV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A k-dimensional box is the cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G,denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R-1 x R-2 x ... x R-k where each Ri is a closed interval on the real line of the form [a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G) <= t + inverted right perpendicularlog(n - t)inverted left perpendicular - 1 and box(G) <= left perpendiculart/2right perpendicular + 1, where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds. F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, box(G) <= left perpendicularn/2right perpendicular and cub(G) <= inverted right perpendicular2n/3inverted left perpendicular, where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then box(G) <= inverted right perpendicularn/4inverted left perpendicular and this bound is tight. We also show that if G is a bipartite graph then cub(G) <= n/2 + inverted right perpendicularlog n inverted left perpendicular - 1. We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to n/4. Interestingly, if boxicity is very close to n/2, then chromatic number also has to be very high. In particular, we show that if box(G) = n/2 - s, s >= 0, then chi (G) >= n/2s+2, where chi (G) is the chromatic number of G.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). Let Delta = Delta(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by K-n,K-n. Alon, McDiarmid and Reed observed that a'(K-p-1,K-p-1) = p for every prime p. In this paper we prove that a'(K-p,K-p) <= p + 2 = Delta + 2 when p is prime. Basavaraju, Chandran and Kummini proved that a'(K-n,K-n) >= n + 2 = Delta + 2 when n is odd, which combined with our result implies that a'(K-p,K-p) = p + 2 = Delta + 2 when p is an odd prime. Moreover we show that if we remove any edge from K-p,K-p, the resulting graph is acyclically Delta + 1 = p + 1-edge-colorable. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a'(G) <= Delta+2, where Delta=Delta(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Delta(G)<= 4, with the additional restriction that m <= 2n-1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m <= 2n, when Delta(G)<= 4. It follows that for any graph G if Delta(G)<= 4, then a'(G) <= 7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a′(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intention of this note is to motivate the researchers to study Hadwiger's conjecture for circular arc graphs. Let η(G) denote the largest clique minor of a graph G, and let χ(G) denote its chromatic number. Hadwiger's conjecture states that η(G)greater-or-equal, slantedχ(G) and is one of the most important and difficult open problems in graph theory. From the point of view of researchers who are sceptical of the validity of the conjecture, it is interesting to study the conjecture for graph classes where η(G) is guaranteed not to grow too fast with respect to χ(G), since such classes of graphs are indeed a reasonable place to look for possible counterexamples. We show that in any circular arc graph G, η(G)less-than-or-equals, slant2χ(G)−1, and there is a family with equality. So, it makes sense to study Hadwiger's conjecture for this family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hadwiger number eta(G) of a graph G is the largest integer n for which the complete graph K-n on n vertices is a minor of G. Hadwiger conjectured that for every graph G, eta(G) >= chi(G), where chi(G) is the chromatic number of G. In this paper, we study the Hadwiger number of the Cartesian product G square H of graphs. As the main result of this paper, we prove that eta(G(1) square G(2)) >= h root 1 (1 - o(1)) for any two graphs G(1) and G(2) with eta(G(1)) = h and eta(G(2)) = l. We show that the above lower bound is asymptotically best possible when h >= l. This asymptotically settles a question of Z. Miller (1978). As consequences of our main result, we show the following: 1. Let G be a connected graph. Let G = G(1) square G(2) square ... square G(k) be the ( unique) prime factorization of G. Then G satisfies Hadwiger's conjecture if k >= 2 log log chi(G) + c', where c' is a constant. This improves the 2 log chi(G) + 3 bound in [2] 2. Let G(1) and G(2) be two graphs such that chi(G1) >= chi(G2) >= clog(1.5)(chi(G(1))), where c is a constant. Then G1 square G2 satisfies Hadwiger's conjecture. 3. Hadwiger's conjecture is true for G(d) (Cartesian product of G taken d times) for every graph G and every d >= 2. This settles a question by Chandran and Sivadasan [2]. ( They had shown that the Hadiwger's conjecture is true for G(d) if d >= 3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The boxicity of a graph G, denoted box(G), is the least integer d such that G is the intersection graph of a family of d-dimensional (axis-parallel) boxes. The cubicity, denoted cub(G), is the least dsuch that G is the intersection graph of a family of d-dimensional unit cubes. An independent set of three vertices is an asteroidal triple if any two are joined by a path avoiding the neighbourhood of the third. A graph is asteroidal triple free (AT-free) if it has no asteroidal triple. The claw number psi(G) is the number of edges in the largest star that is an induced subgraph of G. For an AT-free graph G with chromatic number chi(G) and claw number psi(G), we show that box(G) <= chi(C) and that this bound is sharp. We also show that cub(G) <= box(G)([log(2) psi(G)] + 2) <= chi(G)([log(2) psi(G)] + 2). If G is an AT-free graph having girth at least 5, then box(G) <= 2, and therefore cub(G) <= 2 [log(2) psi(G)] + 4. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a five-level inverter scheme with four two-level inverters for a four-pole induction motor (IM) drive. In a conventional three-phase four-pole IM, there exists two identical voltage-profile winding coil groups per phase around the armature, which are connected in series and spatially apart by two pole pitches. In this paper, these two identical voltage-profile pole-pair winding coils in each phase of the IM are disconnected and fed from four two-level inverters from four sides of the windings with one-fourth dc-link voltage as compared to a conventional five-level neutral-point-clamped inverter. The scheme presented in this paper does not require any special design modification for the induction machine. For this paper, a four-pole IM drive is used, and the scheme can be easily extended to IMs with more than four poles. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.