5 resultados para Chl

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite-derived chlorophyll a concentration (chl a) maps show three regions with high chl a in the Bay of Bengal. First among these is close to the coast, particularly off river mouths, with high values coinciding with the season of peak discharge; second is in the southwestern bay during the northeast monsoon, which is forced by local Ekman pumping; and the third is to the east of Sri Lanka in response to the summer monsoon winds. Chlorophyll-rich water from the mouths of rivers flows either along the coast or in an offshore direction, up to several hundred kilometers, depending on the prevailing ocean current pattern. The Irrawady River plume flows toward offshore and then turns northwestward during October–December, but it flows along the coast into the Andaman Sea for the rest of the year. From the Ganga-Brahmaputra river mouth, chl a–rich water flows directly southward into the open bay during spring but along the Indian coast during summer and winter. Along the Indian coast, the flow of chl a–rich water is determined by the East India Coastal Current (EICC). Whenever the EICC meanders off the Indian coast, it leads to an offshore outbreak of chl a–rich water from the coastal region into open ocean. The EICC as well as open ocean circulation in the bay is made up of several eddies, and these eddies show relatively higher chl a. Eddies near the coast, however, can often have higher chl a because of advection from the coastal region rather than generation within the eddy itself. The bay experiences several cyclones in a year, most of them occurring during October–November. These cyclones cause a drop in the sea surface temperature, a dip in the sea level, and a local increase in chl a. The impact of a cyclone is weaker in the northern part of the bay because of stronger stratification compared to the southern parts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO/S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, beta(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases. (C) 2011 American Institute of Physics. doi:10.1063/1.3526748]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we report the structure of a 1:1 charge transfer complex between pyridine (PYR) and chloranil (CHL) in solution (CHCl(3)) from the measurement of hyperpolarizability (beta(HRS)) and linear and circular depolarization ratios, D and D', respectively, by the hyper-Rayleigh scattering technique and state-of-the-art quantum chemical calculations. Using linearly (electric field vector along X) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D = I(X,X)(2 omega)/I(X,Z)(2 omega) and D' = I(X,C)(2 omega)/I(Z,C)(2 omega) in the laboratory fixed XYZ frame by detecting the second harmonic (SH) scattered light in a polarization resolved fashion. The stabilization energy and the optical gap calculated through the MP2/cc-pVDZ method using Gaussian09 were not significantly different to distinguish between the cofacial and T-shape structures. Only when the experimentally obtained beta(HRS) and the depolarization ratios, D and D', were matched with the theoretically computed values from single and double configuration interaction (SDCI) calculations performed using the ZINDO-SCRF technique, we concluded that the room temperature equilibrium structure of the complex is cofacial. This is in sharp contrast to an earlier theoretical prediction of the T-shape structure of the complex.