37 resultados para Chemistry, Physical and theoretical.

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of the sulfurdiimide RN=S=NR' (R = R' = SiMe3, 3) in reactions with group 4 metallocene bis(trimethylsilyl)-acetylene complexes of the type [Cp2M(L (eta(2)-Me3Si-C2SiMe3)] (1: M = Ti, no L; 2: M = Zr, L = pyridine) has led to the formation of four-membered metallacycles 4M containing the group 4 metal, nitrogen and sulfur. DFT calculations performed on compound 4Ti indicate that this complex is best described as a sigma-complex with cyclic delocalisation of the ring electrons. Moreover, pseudo-Jahn-Teller distortion plays a significant role in stabilising this complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of the N,N,N',N'-tetramethylethylenediammonium dithiocyanate salt has been examined by experimental charge density studies from high-resolution X-ray diffraction data. The corresponding results are compared with multipole refinements, using theoretical structure factors obtained from a periodic density functional theory calculation at the B3LYP level with a 6-31G** basis set. The salt crystallizes in space group P (1) over bar and contains only a single ion pair with an inversion center in the cation. The salt has thus one unique classical N+-H center dot center dot center dot(NCS)(-) hydrogen bond but also has six other weaker interactions: four C-H center dot center dot center dot S, one C-H center dot center dot center dot N, and one C-H center dot center dot center dot C-pi. The nature of all these interactions has been examined topologically using Bader's quantum theory of "atoms in molecules" and all eight of the Koch-Popelier criteria. The experimental and theoretical approaches agree well and both show that the inter-ion interactions, even in this simplest of systems, play an integrated and complex role in the packing of the ions in the crystal. Electrostatic potential maps are derived from experimental charge densities. This is the first time such a system has been examined in detail by these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of conjugated molecules containing donor (thiophene) and acceptor (malononitrile) is synthesized by Knoevenagel condensation reaction between 2-(2,6-dimethy1-4H-pyran-4-ylidene) malononitrile and thiophene carbaldehyde containing two and three thiophene units. The resulting molecules are characterized by H-1 and C-13 NMR. We have performed UV-vis absorption, fluorescence, and cyclic voltammetry measurements on these materials. The spectroscopic and electrochemical measurements proved beyond doubt that these materials possess lowexcitation gap and are suitable for being an active material in various electronic devices. We have also performed electronic structure calculations using density functional theory (DFT) and INDO/SCI methods to characterize the ground and excited states of this class of molecules. These donor-acceptor molecules show a strong charge transfercharacter that increases with the increase in the number of thiophene rings coupled to the malononitrile acceptor moiety. We have also calculated the pi-coherence length, Stoke's shift, and effect of solvents on excited states for this class of molecules, Our theoretical values agree well with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray structure and electron density distribution of ethane-1,2-diol (ethylene glycol), obtained at a resolution extending to 1.00 Å−1 in sin θ/λ (data completion = 100% at 100 K) by in situ cryocrystallization technique is reported. The diol is in the gauche (g′Gt) conformation with the crystal structure stabilised by a network of inter-molecular hydrogen bonds. In addition to the well-recognized O–H···O hydrogen bonds there is topological evidence for C–H···O inter-molecular interactions. There is no experimental electron density based topological evidence for the occurrence of an intra-molecular hydrogen bond. The O···H spacing is not, vert, similar0.45 Å greater than in the gas-phase with an O–H···O angle close to 90°, calling into question the general assumption that the gauche conformation of ethane-1,2-diol is stabilised by the intra-molecular oxygen–hydrogen interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental charge density distribution in three compounds, 2-chloro-3-quinolinyl methanol, 2-chloro-3-hydroxypyridine, and 2-chloro-3-chloromethyl-8-methylquinoline, has been obtained using high-resolution X-ray diffraction data collected at 100 K based on the aspherical multipole modeling of electron density. These compounds represent type I (cis), type I (trans), and type II geometries, respectively, as defined for short Cl center dot center dot center dot Cl interactions. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from a periodic quantum calculation at the B3LYP/6-31G** level. The topological features derived from the Bader's theory of atoms in molecules (AIM) approach unequivocally suggest that both cis and trans type I geometries show decreased repulsion, whereas type II geometry is attractive based on the nature of polar flattening of the electron density around the Cl atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotational spectra of five isotopologues of the title complex, C(6)H(5)CCH center dot center dot center dot H(2)O, C(6)H(5)CCH center dot center dot center dot HOD, C(6)H(5)CCH center dot center dot center dot D(2)O, C(6)H(5)CCH center dot center dot center dot H(2)(18)O and C(6)H(5)CCD center dot center dot center dot H(2)O, were measured and analyzed. The parent isotopologue is an asymmetric top with kappa = -0.73. The complex is effectively planar (ab inertial plane) and both `a' and `b' dipole transitions have been observed but no c dipole transition could be seen. All the transitions of the parent complex are split into two resulting from an internal motion interchanging the two H atoms in H(2)O. This is confirmed by the absence of such doubling for the C(6)H(5)CCH center dot center dot center dot HOD complex and a significant reduction in the splitting for the D(2)O analog. The rotational spectra, unambiguously, reveal a structure in which H(2)O has both O-H center dot center dot center dot pi (pi cloud of acetylene moiety) and C-H center dot center dot center dot O (ortho C-H group of phenylacetylene) interactions. This is in agreement with the structure deduced by IR-UV double resonance studies (Singh et al., J. Phys. Chem. A, 2008, 112, 3360) and also with the global minimum predicted by advanced electronic structure theory calculations (Sedlack et al., J. Phys. Chem. A, 2009, 113, 6620). Atoms in Molecule (AIM) theoretical analysis of the complex reveals the presence of both O-H center dot center dot center dot pi and C-H center dot center dot center dot O hydrogen bonds. More interestingly, based on the electron densities at the bond critical points, this analysis suggests that both these interactions are equally strong. Moreover, the presence of both these interactions leads to significant deviation from linearity of both hydrogen bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of the low valent metallocene(II) sources Cp'Ti-2(eta(2)-Me3SiC2SiMe3) (Cp' = eta(5)-cyclopentadienyl, 1a or eta(5)-pentamethylcyclopentadienyl, 1b) with different carbodiimide substrates RN=C=NR' 2-R-R' (R = t-Bu; R' = Et; R = R' = i-Pr; t-Bu; SiMe3; 2,4,6-Me-C6H2 and 2,6-i-Pr-C6H3) was investigated to explore the frontiers of ring strained, unusual four-membered heterometallacycles 5-R. The product complexes show dismantlement, isomerization, or C-C coupling of the applied carbodiimide substrates, respectively, to form unusual mono-, di-, and tetranuclear titanium(III) complexes. A detailed theoretical study revealed that the formation of the unusual complexes can be attributed to the biradicaloid nature of the unusual four-membered heterometallacycles 5-R, which presents an intriguing situation of M-C bonding. The combined experimental and theoretical study highlights the delicate interplay of electronic and steric effects in the stabilization of strained four-membered heterometallacycles, accounting for the isolation of the obtained complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this manuscript, rotational spectra of four new isotopologues of the S-H center dot center dot center dot pi bonded C2H4 center dot center dot center dot H2S complex, i.e., C2D4 center dot center dot center dot H2S, C2D4 center dot center dot center dot D2S, C2D4 center dot center dot center dot HDS, and (CCH4)-C-13 center dot center dot center dot H2S have been reported and analyzed. All isotopologues except C2D4 center dot center dot center dot HDS show a four line pattern whereas a doubling of the transition frequencies was observed for C2D4 center dot center dot center dot HDS. These results together with our previous report on the title complex M. Goswami, P. K. Mandal, D. J. Ramdass, and E. Arunan, Chem. Phys. Lett. 393(1-3), 22-27 (2004)] confirm that both subunits (C2H4 and H2S) are involved in large amplitude motions leading to a splitting of each rotational transition to a quartet. Further, the results also confirm that the motions which are responsible for the observed splittings involve both monomers. Molecular symmetry group analysis, considering the interchange of equivalent H atoms in H2S and C2H4 could explain the observed four line pattern and their intensities in the microwave spectrum. In addition, hydride stretching fundamentals of the complex were measured using coherence-converted population transfer Fourier Transform Microwave-infrared (IR-MW double resonance) experiments in the S-H and C-H stretch regions. Changes in the tunneling splittings upon vibrational excitation are consistent with the isotopic dependence of pure rotational transitions. A complexation shift of 2.7-6.5 cm(-1) has been observed in the two fundamental S-H stretching modes of the H2S monomer in the complex. Vibrational pre-dissociation in the bound S-H stretch has been detected whereas the instrument-limited line-shapes in other S-H and C-H stretches indicate slower pre-dissociation rate. Some local perturbations in the vibrational spectra have been observed. Two combination bands have been observed corresponding to both the S-H stretching fundamentals and what appears to be the intermolecular stretching mode at 55 cm(-1). The tunneling splitting involved in the rotation of C2H4 unit has been deduced to be 1.5 GHz from the IR-MW results. In addition, ab initio barrier heights derived for different motions of the monomers support the experimental results and provide further insight into the motions causing the splitting. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The five-coordinated 16-electron complex Ru(Me)(dppe)(2)]OTf] (3) undergoes methane elimination at room temperature to afford the ortho-metalated species (dppe){(C6H5)(C6H4)PCH2CH2P(C6H5)(2)}Ru]OTf] (7). Methane elimination, monitored using NMR spectroscopy, revealed no intermediate throughout the reaction. The NOE between Ru-Me protons and ortho phenyl protons and an agostic interaction trans to the methyl group were found in complex 3 by NMR spectroscopy, which form the basis for three plausible pathways for methane elimination and ortho metalation: pathway I (through spatial interaction), pathway II (through oxidative addition and reductive elimination), and pathway III (through agostic interaction). Methane elimination from complex 3 via pathway I was discounted, since it involves interactions through space and not through bonds. Moreover, the calculated energy barrier for the pathway I transition state was quite high (71.3 kcal/mol), which also indicates that this pathway is very unlikely. Furthermore, no spectroscopic evidence for oxidatively added seven-coordinated Ru(IV) species was found and the computed energy barrier of the transition state for pathway II was moderately high (41.1 kcal/mol), which suggests that this cannot be the right pathway for methane elimination and ortho-metalation of complex 3. On the other hand, indirect evidence in the form of chemical reactions point to the most plausible pathway for methane elimination, pathway III, via the intermediacy of a sigma-CH4 complex that could not be found spectroscopically. DFT calculations at several levels on this pathway showed an initial low-barrier rearrangement through TS1 to a square-pyramidal intermediate wherein methyl and agostic C-H are cis to each other. Migration of hydrogen from agostic C-H and elimination of methane proceed through the transition state TS2, which retains a weak metal-H bonding through most parts of the reaction coordinate. Upon comparison of all three pathways, pathway III was found to be the most likely for methane elimination and ortho-metalation of complex 3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports microwave spectroscopic and theoretical investigations on the interaction of water with hexafluoroisopropanol (HFIP). The HFIP monomer can exist in two conformations, antiperiplanar (AP) and synclinical (SC). The former is about 5 kJ mol(-1) more stable than the latter. Theoretical calculations predicted three potential minima for the complex, two having AP and one having SC conformations. Though, the binding energy for the HFIP(SC)...H2O turned out to be larger than that for the other two conformers having HFIP in the AP form, the global minimum for the complex in the potential energy hypersurface had HFIP in the AP form. Experimental rotational constants for four isotopologues measured using a pulsed nozzle Fourier transform microwave spectrometer, correspond to the global minimum in the potential energy hypersurface. The structural parameters and the internal dynamics of the complex could be determined from the rotational spectra of the four isotopologues. The global minimum has the HFIP(AP) as a hydrogen bond donor forming a strong hydrogen bond with H2O. To characterize the strength of the bonding and to probe the other interactions within the complex, atoms in molecules, non-covalent interaction index and natural bond orbital theoretical analyses have been performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental charge density distributions in two known conformational polymorphs (orange and yellow) of coumarin 314 dye are analyzed based on multipole modeling of X-ray diffraction data collected at 100 K. The experimental results are compared with the charge densities derived from multipole modeling of theoretical structure factors obtained from periodic quantum calculation with density functional theory (DFT) method and B3LYP/6-31G(d,p) level of theory. The presence of disorder at the carbonyl oxygen atom of ethoxycarbonyl group in the yellow form, which was not identified earlier, is addressed here. The investigationof intermolecular interactions, based on Hirshfeld surface analysis and topological properties via quantum theory of atoms in molecule and total electrostatic interaction energies, revealed significant differences between the polymorphs. The differences of electrostatic nature in these two polymorphic forms were unveiled via construction of three-dimensional deformation electrostatic potential maps plotted over the molecular surfaces. The lattice energies evaluated from ab initio calculations on the two polymorphic forms indicate that the yellow form is likely to be the most favorable thermodynamically. The dipole moments derived from experimental and theoretical charge densities and also from Lorentz tensor approach are compared with the single-molecule dipole moments. In each case, the differences of dipole moments between the polymorphs are identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photophysics and photochemistry of cyclobutanethiones 1-5 have been studied with the view to generalize the a-cleavage reactions of cyclobutanethiones. The above cyclobutanethiones possess a unit intersystem crossing efficiency from S1 to T1, a high self-quenching rate (-4 X lo9 M-' s-'), and a short triplet lifetime (<0.50 ws). Photolysis of 1-5 yields in benzene a product resulting from 1,3-transposition and in methanol two cyclic thioacetals.The origin of these products is traced to the triplet excited state. A mechanistic scheme involving a-cleavage as the primary photoprocess and diradicals and thiacarbenes as intermediates has been formulated to rationalize the formation of thioacetals and rearranged products. The proposed mechanistic scheme is supported by UHF MIND013 calculations performed on four model systems, cyclobutanethiones and 1,3-cyclobutanedithiones 18-21. These calculations indicate that formation of diradical is favored thermodynamically and kinetically for systems analogous to 19 and 21, while rearrangement to thiacarbene is likely only for those similar to 21.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-Ray structural data, as well as semiempirical and ab initio molecular orbital calculations, reveal no systematic and substantial difference between the C–C bond lengths of cis and trans 1,2-diketones. Additional results on various conformations of 1,2-diimines and 1,2-dithiones follow the same pattern. Therefore, lone-pair repulsions cannot be implicated in the observed lengthening of C–C bonds in isatin and several related molecules. Conjugation in these systems occurs peripherally avoiding the participation of the central C–C bond. Negative hyperconjugative interaction between the oxygen lone pairs and the adjacent C–C σ* orbital is suggested to be the principal reason for the relatively long C–C bond in diketones. This effect is found in both the cis and trans conformations.