345 resultados para Chemical product
em Indian Institute of Science - Bangalore - Índia
Resumo:
Rice husk ash (about 95% silica) with known physical and chemical characteristics has been reacted with lime and water. The setting process for a lime-excess and a lime-deficient mixture has been investigated. The product of the reaction has been shown to be a calcium silicate hydrate, C-S-H(I)+ by a combination of thermal analysis, XRD and electron microscopy. Formation of C-S-H(I) accounts for the strength of lime-rice husk ash cement.
Resumo:
A novel compound obtained by the oxidation of the title compound with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone has been assigned structure (5) on the basis of spectral data and X-ray crystal structure analysis.
Resumo:
Organic molecules such as glucose or lactose mediate the synthesis and stabilize alpha-nickel hydroxide in a simple precipitation reaction, while, in the absence of these additives, beta-nickel hydroxide is formed. The additives are not incorporated in the product phase.
Resumo:
Enantioselective synthesis of possible diastereomers of heptadeca-1-ene-4,6-diyne-3,8,9,10-tetrol, a structure proposed for the natural product isolated from Hydrocotyle leucocephala is accomplished. The reported spectral data of the natural product did not match those of any of the isomers that were synthesized and established that the structure proposed for the natural product is not correct and requires revision.
Resumo:
A stereoselective strategy for the rapid acquisition of the complete framework (dideoxyottelione A) of the promising cytotoxic agent ottelione A, with four contiguous stereogenic centres on a hydrindane skeleton and a sensitive 4-methylenecyclohex-2-enone functionality, from the readily available Diels-Alder adduct of 1,2,3,4-tetrachloro-5,5-dimethoxycyclopentadiene and norbornadiene, is delineated.
Resumo:
Hybrid systems are constructs of different molecular entities, natural or unnatural, to generate functional molecules in which the characteristics of various components are modulated, amplified or give rise to entirely new properties. These hybrids can be designed from carefully selected components either through domain intergration of key structural/functional features or via straightforward covalent linkages. Some of the recently reported hybrid systems based on steroid, carbohydrate, C-60-fullerene platforms, amongst others, mainly crafted with the object of enhancement of the therapeutical spectrum, will be discussed.
Resumo:
Fragmentation behavior of two classes of cyclodepsipeptides, isariins and isaridins, obtained from the fungus Isaria, was investigated in the presence of different metal ions using multistage tandem mass spectrometry (MS(n)) with collision induced dissociation (CID) and validated by NMR spectroscopy. During MS(n) process, both protonated and metal-cationized isariins generated product ions belonging to the identical `b-ion' series, exhibiting initial backbone cleavage explicitly at the beta-ester bond. Fragmentation behavior for the protonated and metal-cationized acyclic methyl ester derivative of isariins was very similar. On the contrary, isaridins during fragmentation produced ions belonging to the `b' or/and the `y' ion series depending on the nature of interacting metal ions, due to initial backbone cleavages at the beta-ester linkage or/and at a specific amide linkage. Interestingly, independent of the nature of the interacting metal ions, the product ions formed from the acyclic methyl ester derivative of isaridins belonged only to the `y-type'. Complementary NMR data showed that, while all metal ions were located around the beta-ester group of isariins, the metal ion interacting sites varied across the backbone for isaridins. Combined MS and NMR data suggest that the different behavior in sequence specific charge-driven fragmentation of isariins and isaridins is predetermined because of the constituent beta-hydroxy acid residue in isariins and the cis peptide bond in isaridins.
Resumo:
The possible chemical reactions that take place during the growth of single crystal films of silicon on sapphire (SOS) are analyzed thermodynamically. The temperature for the growth of good quality epitaxial films is dependent on the extent of water vapor present in the carrier gas. The higher the water vapor content the higher the temperature needed to grow SOS films. Due to the interaction of silicon with sapphire at elevated temperatures, SOS films are doped with aluminum. The extent of doping is dependent on the conditions of film growth. The doping by aluminum from the substrate increases with increasing growth temperatures and decreasing growth rates. The equilibrium concentrations of aluminum at the silicon-sapphire interface are calculated as a function of deposition temperature, assuming that SiO2 or Al6Si2O13 are the products of reaction. It is most likely that the product could be a solid solutio n of Al2O3 in SiO2. The total amount of aluminum released due to the interaction between silicon and sapphire will account only for the formation of not more than one monolayer of reaction product unless the films are annealed long enough at elevated temperatures. This value is in good agreement with the recently reported observations employing high resolution transmission electron microscopy.
Resumo:
We derive sum rules which constrain the spectral density corresponding to the retarded propagator of the T-xy component of the stress tensor for three gravitational duals. The shear sum rule is obtained for the gravitational dual of the N = 4 Yang-Mills, theory of the M2-branes and M5-branes all at finite chemical potential. We show that at finite chemical potential there are additional terms in the sum rule which involve the chemical potential. These modifications are shown to be due to the presence of scalars in the operator product expansion of the stress tensor which have non-trivial vacuum expectation values at finite chemical potential.
Resumo:
The essential oil from the leaves of Didymocarpus tomentosa was extracted by hydrodistillation and analyzed by GC/FID and GC/MS. Twenty five constituents amounting to 81.6% of the oil were identified. The leaf oil contained 78.7% sesquiterpenes and 2.9% monoterpenes. The leaf essential oil of D. tomentosa is a unique caryophyllene-rich natural source containing beta-caryophyllene, caryophyllene oxide, alpha-humulene and humulene oxide. The cytotoxic activity of the oil was determined by the BSLT using shrimp larva and the MTT assay using HeLa tumor cell line. The oil showed significant cytotoxic activity with LC50 and IC50 values of 12.26 and 11.4 mu g/mL, respectively. This is the first report on the chemical composition and cytotoxic activity of the essential oil of D. tomentosa.
Resumo:
Enantiospecific total synthesis and determination of the absolute stereochemistry of the alpha-pyrone-containing natural product synargentolide B were accomplished. The absolute stereochemistry of the natural product was established by synthesizing the possible diastereomers and comparison of the data with those reported for the natural product. During the process, total synthesis of the putative structure of related natural product 6R-1S,2R,SR,6S-(tetraacetyloxy)-3E-heptenyl]-5,6-dihydro-2H-pyran-2-o ne was also accomplished and confirmed by X-ray crystal structure analysis. Wittig-Horner reaction of a chiral phosphonate derived from (S)-lactic acid and ring-closing metathesis were the key reactions during the course of the total synthesis.
Resumo:
The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.